Home Mathematics Regular 3-polytopes of order 2𝑛𝑝
Article
Licensed
Unlicensed Requires Authentication

Regular 3-polytopes of order 2𝑛𝑝

  • Dong-Dong Hou , Yan-Quan Feng and Dimitri Leemans EMAIL logo
Published/Copyright: February 11, 2025

Abstract

In a paper from 2006, Schulte and Weiss initiated the problem of characterizing the regular polytopes of orders 2 n p for 𝑛 a positive integer and 𝑝 an odd prime. In this paper, we first prove that if a 3-polytope of order 2 n p has Schläfli type { k 1 , k 2 } , then p k 1 or p k 2 . This leads to two classes, up to duality, for the Schläfli type, namely Type (1) where k 1 = 2 s p and k 2 = 2 t and Type (2) where k 1 = 2 s p and k 2 = 2 t p . We then show that there exists a regular 3-polytope of order 2 n p with Type (1) when s 2 , t 2 and n s + t + 1 coming from a general construction of regular 3-polytopes of order 2 n 1 2 with Schläfli type { 2 s 1 , 2 t 2 } , where both 1 and 2 are odd. Furthermore, for p = 3 and n 7 , we show that there exists a regular 3-polytope of order 3 2 n with type { 6 , 2 s } if and only if 2 s n 2 and s n 3 . For Type (2), we prove that there exists a regular 3-polytope of order 2 n 3 with Schläfli type { 6 , 6 } when n 5 coming from a general construction of regular 3-polytopes of Schläfli type { 6 , 6 } with orders 192 m 3 , 384 m 3 or 768 m 3 for any positive integer 𝑚.

Award Identifier / Grant number: 12201371

Award Identifier / Grant number: 12331013

Award Identifier / Grant number: 12311530692

Award Identifier / Grant number: 12271024

Award Identifier / Grant number: 12161141005

Funding statement: This work was supported by the National Natural Science Foundation of China (12201371, 12331013, 12311530692, 12271024, 12161141005), the 111 Project of China (B16002), the Fundamental Research Program of Shanxi Province 20210302124078, an Action de Recherche Concertée grant of the Communauté Française Wallonie Bruxelles and a PINT-BILAT-M grant from the Fonds National de la Recherche Scientifique de Belgique (FRS-FNRS).

  1. Communicated by: Christopher W. Parker

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265. 10.1006/jsco.1996.0125Search in Google Scholar

[2] P. A. Brooksbank, On the ranks of string C-group representations for symplectic and orthogonal groups, Polytopes and Discrete Geometry, Contemp. Math. 764, American Mathematical Society, Providence (2021), 31–41. 10.1090/conm/764/15329Search in Google Scholar

[3] P. A. Brooksbank and D. Leemans, Polytopes of large rank for PSL ( 4 , F q ) , J. Algebra 452 (2016), 390–400. 10.1016/j.jalgebra.2015.11.051Search in Google Scholar

[4] P. A. Brooksbank and D. A. Vicinsky, Three-dimensional classical groups acting on polytopes, Discrete Comput. Geom. 44 (2010), no. 3, 654–659. 10.1007/s00454-009-9212-0Search in Google Scholar

[5] P. J. Cameron, M. E. Fernandes and D. Leemans, The number of string C-groups of high rank, Adv. Math. 453 (2024), Article ID 109832. 10.1016/j.aim.2024.109832Search in Google Scholar

[6] P. J. Cameron, M. E. Fernandes, D. Leemans and M. Mixer, Highest rank of a polytope for A n , Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 135–176. 10.1112/plms.12039Search in Google Scholar

[7] M. Conder, The smallest regular polytopes of given rank, Adv. Math. 236 (2013), 92–110. 10.1016/j.aim.2012.12.015Search in Google Scholar

[8] M. Conder, Regular polytopes with up to 2000 flags, https://www.math.auckland.ac.nz/~conder/RegularPolytopesWithFewFlags-ByOrder.txt. Search in Google Scholar

[9] T. Connor, J. De Saedeleer and D. Leemans, Almost simple groups with socle PSL ( 2 , q ) acting on abstract regular polytopes, J. Algebra 423 (2015), 550–558. 10.1016/j.jalgebra.2014.10.020Search in Google Scholar

[10] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Ergeb. Math. Grenzgeb. (3) 14, Springer, New York, 1972. 10.1007/978-3-662-21946-1Search in Google Scholar

[11] G. Cunningham and D. Pellicer, Classification of tight regular polyhedra, J. Algebraic Combin. 43 (2016), no. 3, 665–691. 10.1007/s10801-015-0649-3Search in Google Scholar

[12] M. E. Fernandes and D. Leemans, Polytopes of high rank for the symmetric groups, Adv. Math. 228 (2011), no. 6, 3207–3222. 10.1016/j.aim.2011.08.006Search in Google Scholar

[13] M. E. Fernandes, D. Leemans and M. Mixer, All alternating groups A n with n 12 have polytopes of rank n 1 2 , SIAM J. Discrete Math. 26 (2012), no. 2, 482–498. 10.1137/110838467Search in Google Scholar

[14] M. E. Fernandes, D. Leemans and M. Mixer, Polytopes of high rank for the alternating groups, J. Combin. Theory Ser. A 119 (2012), no. 1, 42–56. 10.1016/j.jcta.2011.07.006Search in Google Scholar

[15] M. E. Fernandes, D. Leemans and M. Mixer, Corrigendum to “Polytopes of high rank for the symmetric groups” [Adv. Math. 228 (2011) 3207–3222] [MR2844941], Adv. Math. 238 (2013), 506–508. 10.1016/j.aim.2012.10.006Search in Google Scholar

[16] M. E. Fernandes, D. Leemans and M. Mixer, An extension of the classification of high rank regular polytopes, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8833–8857. 10.1090/tran/7425Search in Google Scholar

[17] Y. Gomi, M. L. Loyola and M. L. A. N. De Las Peñas, String C-groups of order 1024, Contrib. Discrete Math. 13 (2018), no. 1, 1–22. Search in Google Scholar

[18] D.-D. Hou, Y.-Q. Feng and D. Leemans, Existence of regular 3-polytopes of order 2 n , J. Group Theory 22 (2019), no. 4, 579–616. 10.1515/jgth-2018-0155Search in Google Scholar

[19] D.-D. Hou, Y.-Q. Feng and D. Leemans, On regular polytopes of 2-power order, Discrete Comput. Geom. 64 (2020), no. 2, 339–346. 10.1007/s00454-019-00119-5Search in Google Scholar

[20] D. L. Johnson, Topics in the Theory of Group Presentations, London Math. Soc. Lecture Note Ser. 42, Cambridge University, Cambridge, 1980. Search in Google Scholar

[21] D. Leemans, Almost simple groups of Suzuki type acting on polytopes, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3649–3651. 10.1090/S0002-9939-06-08448-6Search in Google Scholar

[22] D. Leemans, String C-group representations of almost simple groups: A survey, Polytopes and Discrete Geometry, Contemp. Math. 764, American Mathematical Society, Providence (2021), 157–178. 10.1090/conm/764/15335Search in Google Scholar

[23] D. Leemans and E. Schulte, Groups of type L 2 ( q ) acting on polytopes, Adv. Geom. 7 (2007), no. 4, 529–539. 10.1515/ADVGEOM.2007.031Search in Google Scholar

[24] D. Leemans and E. Schulte, Polytopes with groups of type PGL 2 ( q ) , Ars Math. Contemp. 2 (2009), no. 2, 163–171. 10.26493/1855-3974.102.290Search in Google Scholar

[25] D. Leemans, E. Schulte and H. Van Maldeghem, Groups of Ree type in characteristic 3 acting on polytopes, Ars Math. Contemp. 14 (2018), no. 2, 209–226. 10.26493/1855-3974.1193.0faSearch in Google Scholar

[26] D. Leemans and L. Vauthier, An atlas of abstract regular polytopes for small groups, Aequationes Math. 72 (2006), no. 3, 313–320. 10.1007/s00010-006-2843-9Search in Google Scholar

[27] M. L. Loyola, String C-groups from groups of order 2 m and exponent at least 2 m 3 , preprint (2018), https://arxiv.org/abs/1607.01457. Search in Google Scholar

[28] P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia Math. Appl. 92, Cambridge University, Cambridge, 2002. 10.1017/CBO9780511546686Search in Google Scholar

[29] P. Potočnik, P. Spiga and G. Verret, Groups of order at most 6,000 generated by two elements, one of which is an involution, and related structures, Symmetries in Graphs, Maps, and Polytopes, Springer Proc. Math. Stat. 159, Springer, Cham (2016), 273–286. 10.1007/978-3-319-30451-9_14Search in Google Scholar

[30] E. Schulte and A. I. Weiss, Problems on polytopes, their groups, and realizations, Period. Math. Hungar. 53 (2006), no. 1–2, 231–255. 10.1007/s10998-006-0035-ySearch in Google Scholar

[31] M. Suzuki, Group Theory. I, Grundlehren Math. Wiss. 247, Springer, Berlin, 1982. 10.1007/978-3-642-61804-8Search in Google Scholar

[32] J. Tits, Sur les analogues algébriques des groupes semi-simples complexes, Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge Rech. Math., Établissements Ceuterick, Louvain (1957), 261–289. Search in Google Scholar

Received: 2024-07-16
Revised: 2024-12-17
Published Online: 2025-02-11
Published in Print: 2025-07-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2024-0154/html?lang=en
Scroll to top button