Abstract
In a paper from 2006, Schulte and Weiss initiated the problem of characterizing the regular polytopes of orders
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 12201371
Award Identifier / Grant number: 12331013
Award Identifier / Grant number: 12311530692
Award Identifier / Grant number: 12271024
Award Identifier / Grant number: 12161141005
Funding statement: This work was supported by the National Natural Science Foundation of China (12201371, 12331013, 12311530692, 12271024, 12161141005), the 111 Project of China (B16002), the Fundamental Research Program of Shanxi Province 20210302124078, an Action de Recherche Concertée grant of the Communauté Française Wallonie Bruxelles and a PINT-BILAT-M grant from the Fonds National de la Recherche Scientifique de Belgique (FRS-FNRS).
-
Communicated by: Christopher W. Parker
References
[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265. 10.1006/jsco.1996.0125Search in Google Scholar
[2] P. A. Brooksbank, On the ranks of string C-group representations for symplectic and orthogonal groups, Polytopes and Discrete Geometry, Contemp. Math. 764, American Mathematical Society, Providence (2021), 31–41. 10.1090/conm/764/15329Search in Google Scholar
[3]
P. A. Brooksbank and D. Leemans,
Polytopes of large rank for
[4] P. A. Brooksbank and D. A. Vicinsky, Three-dimensional classical groups acting on polytopes, Discrete Comput. Geom. 44 (2010), no. 3, 654–659. 10.1007/s00454-009-9212-0Search in Google Scholar
[5] P. J. Cameron, M. E. Fernandes and D. Leemans, The number of string C-groups of high rank, Adv. Math. 453 (2024), Article ID 109832. 10.1016/j.aim.2024.109832Search in Google Scholar
[6]
P. J. Cameron, M. E. Fernandes, D. Leemans and M. Mixer,
Highest rank of a polytope for
[7] M. Conder, The smallest regular polytopes of given rank, Adv. Math. 236 (2013), 92–110. 10.1016/j.aim.2012.12.015Search in Google Scholar
[8] M. Conder, Regular polytopes with up to 2000 flags, https://www.math.auckland.ac.nz/~conder/RegularPolytopesWithFewFlags-ByOrder.txt. Search in Google Scholar
[9]
T. Connor, J. De Saedeleer and D. Leemans,
Almost simple groups with socle
[10] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Ergeb. Math. Grenzgeb. (3) 14, Springer, New York, 1972. 10.1007/978-3-662-21946-1Search in Google Scholar
[11] G. Cunningham and D. Pellicer, Classification of tight regular polyhedra, J. Algebraic Combin. 43 (2016), no. 3, 665–691. 10.1007/s10801-015-0649-3Search in Google Scholar
[12] M. E. Fernandes and D. Leemans, Polytopes of high rank for the symmetric groups, Adv. Math. 228 (2011), no. 6, 3207–3222. 10.1016/j.aim.2011.08.006Search in Google Scholar
[13]
M. E. Fernandes, D. Leemans and M. Mixer,
All alternating groups
[14] M. E. Fernandes, D. Leemans and M. Mixer, Polytopes of high rank for the alternating groups, J. Combin. Theory Ser. A 119 (2012), no. 1, 42–56. 10.1016/j.jcta.2011.07.006Search in Google Scholar
[15] M. E. Fernandes, D. Leemans and M. Mixer, Corrigendum to “Polytopes of high rank for the symmetric groups” [Adv. Math. 228 (2011) 3207–3222] [MR2844941], Adv. Math. 238 (2013), 506–508. 10.1016/j.aim.2012.10.006Search in Google Scholar
[16] M. E. Fernandes, D. Leemans and M. Mixer, An extension of the classification of high rank regular polytopes, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8833–8857. 10.1090/tran/7425Search in Google Scholar
[17] Y. Gomi, M. L. Loyola and M. L. A. N. De Las Peñas, String C-groups of order 1024, Contrib. Discrete Math. 13 (2018), no. 1, 1–22. Search in Google Scholar
[18]
D.-D. Hou, Y.-Q. Feng and D. Leemans,
Existence of regular 3-polytopes of order
[19] D.-D. Hou, Y.-Q. Feng and D. Leemans, On regular polytopes of 2-power order, Discrete Comput. Geom. 64 (2020), no. 2, 339–346. 10.1007/s00454-019-00119-5Search in Google Scholar
[20] D. L. Johnson, Topics in the Theory of Group Presentations, London Math. Soc. Lecture Note Ser. 42, Cambridge University, Cambridge, 1980. Search in Google Scholar
[21] D. Leemans, Almost simple groups of Suzuki type acting on polytopes, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3649–3651. 10.1090/S0002-9939-06-08448-6Search in Google Scholar
[22] D. Leemans, String C-group representations of almost simple groups: A survey, Polytopes and Discrete Geometry, Contemp. Math. 764, American Mathematical Society, Providence (2021), 157–178. 10.1090/conm/764/15335Search in Google Scholar
[23]
D. Leemans and E. Schulte,
Groups of type
[24]
D. Leemans and E. Schulte,
Polytopes with groups of type
[25] D. Leemans, E. Schulte and H. Van Maldeghem, Groups of Ree type in characteristic 3 acting on polytopes, Ars Math. Contemp. 14 (2018), no. 2, 209–226. 10.26493/1855-3974.1193.0faSearch in Google Scholar
[26] D. Leemans and L. Vauthier, An atlas of abstract regular polytopes for small groups, Aequationes Math. 72 (2006), no. 3, 313–320. 10.1007/s00010-006-2843-9Search in Google Scholar
[27]
M. L. Loyola,
String C-groups from groups of order
[28] P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia Math. Appl. 92, Cambridge University, Cambridge, 2002. 10.1017/CBO9780511546686Search in Google Scholar
[29] P. Potočnik, P. Spiga and G. Verret, Groups of order at most 6,000 generated by two elements, one of which is an involution, and related structures, Symmetries in Graphs, Maps, and Polytopes, Springer Proc. Math. Stat. 159, Springer, Cham (2016), 273–286. 10.1007/978-3-319-30451-9_14Search in Google Scholar
[30] E. Schulte and A. I. Weiss, Problems on polytopes, their groups, and realizations, Period. Math. Hungar. 53 (2006), no. 1–2, 231–255. 10.1007/s10998-006-0035-ySearch in Google Scholar
[31] M. Suzuki, Group Theory. I, Grundlehren Math. Wiss. 247, Springer, Berlin, 1982. 10.1007/978-3-642-61804-8Search in Google Scholar
[32] J. Tits, Sur les analogues algébriques des groupes semi-simples complexes, Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge Rech. Math., Établissements Ceuterick, Louvain (1957), 261–289. Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the kernel of actions on asymptotic cones
- CAT(0) cube complexes and asymptotically rigid mapping class groups
- Iwip endomorphisms of free groups and fixed points of graph selfmaps
- Space of orders with finite Cantor–Bendixson rank
- Lifting subgroups of PSL2 to SL2 over local fields
- Regular 3-polytopes of order 2𝑛𝑝
- On the number of tuples of group elements satisfying a first-order formula
- Exponent-critical groups
- On soluble groups in which commutators have prime power order
- A character theoretic criterion for Fitting height
- Hilbert divisors and degrees of irreducible Brauer characters
- Character triples and relative defect zero characters
Articles in the same Issue
- Frontmatter
- On the kernel of actions on asymptotic cones
- CAT(0) cube complexes and asymptotically rigid mapping class groups
- Iwip endomorphisms of free groups and fixed points of graph selfmaps
- Space of orders with finite Cantor–Bendixson rank
- Lifting subgroups of PSL2 to SL2 over local fields
- Regular 3-polytopes of order 2𝑛𝑝
- On the number of tuples of group elements satisfying a first-order formula
- Exponent-critical groups
- On soluble groups in which commutators have prime power order
- A character theoretic criterion for Fitting height
- Hilbert divisors and degrees of irreducible Brauer characters
- Character triples and relative defect zero characters