Abstract
The prime graph, also called the Gruenberg–Kegel graph, of a finite group 𝐺 is the labelled graph
Dedicated to Cheryl Praeger on the occasion of her 75th birthday
Funding source: Australian Research Council
Award Identifier / Grant number: DE230100579
Funding statement: The first author acknowledges the support of an Australian Research Council Discovery Early Career Researcher Award, project no. DE230100579.
Acknowledgements
We thank the referees for several helpful comments.
-
Communicated by: Andrea Lucchini
References
[1] O. A. Alekseeva and A. S. Kondrat’ev, On recognizability of some finite simple orthogonal groups by spectrum, Proc. Steklov Inst. Math. 266 (2009), 10–23. 10.1134/S0081543809060029Search in Google Scholar
[2] A. S. Bang, Talteoretiske undersøgelser, Tidsskrift Math. 4 (1886), 70–80. Search in Google Scholar
[3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265. 10.1006/jsco.1996.0125Search in Google Scholar
[4] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. With a Foreword by Martin Liebeck, London Math. Soc. Lecture Note Ser. 407, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139192576Search in Google Scholar
[5] T. Breuer, CTblLib – A GAP package, Version 1.3.4, (2022), http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/. Search in Google Scholar
[6]
Y. Bugeaud, Z. Cao and M. Mignotte,
On simple
[7] T. C. Burness and M. Giudici, Classical Groups, Derangements and Primes, Austral. Math. Soc. Lect. Ser. 25, Cambridge University, Cambridge, 2016. 10.1017/CBO9781139059060Search in Google Scholar
[8] P. J. Cameron and N. V. Maslova, Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph, J. Algebra 607 (2022), 186–213. 10.1016/j.jalgebra.2021.12.005Search in Google Scholar
[9] M.-Z. Chen, N. V. Maslova and M. R. Zinov’eva, On characterization of groups by isomorphism type of Gruenberg–Kegel graph, preprint (2025), https://arxiv.org/pdf/2504.14703. Search in Google Scholar
[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford University, Eynsham, 1985. Search in Google Scholar
[11]
D. A. Craven,
The maximal subgroups of the exceptional groups
[12]
S. Dolfi, E. Jabara and M. S. Lucido,
[13] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), no. 3, 775–1029. 10.2140/pjm.1963.13.1029Search in Google Scholar
[14]
G. C. Gerono,
Note sur la résolution en nombres entiers et positifs de l’équation
[15]
M. Giudici,
Maximal subgroups of almost simple groups with socle
[16] M. Hagie, The prime graph of a sporadic simple group, Comm. Algebra 31 (2003), no. 9, 4405–4424. 10.1081/AGB-120022800Search in Google Scholar
[17]
A. S. Kondrat’ev,
On the recognizability of sporadic simple groups
[18]
A. S. Kondrat’ev,
On recognition of the sporadic simple groups
[19]
M. Lee and T. Popiel,
M, B and
[20] R. P. Martineau, On 2-modular representations of the Suzuki groups, Amer. J. Math. 94 (1972), no. 1, 55–72. 10.2307/2373593Search in Google Scholar
[21] R. P. Martineau, On representations of the Suzuki groups over fields of odd characteristic, J. Lond. Math. Soc. (2) 6 (1972), 153–160. 10.1112/jlms/s2-6.1.153Search in Google Scholar
[22] N. V. Maslova, V. V. Panshin and A. M. Staroletov, On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type, Eur. J. Math. 9 (2023), no. 3, Paper No. 78. 10.1007/s40879-023-00672-7Search in Google Scholar
[23] V. D. Mazurov and W. Shi, A note to the characterization of sporadic simple groups, Algebra Colloq. 5 (1998), no. 3, 285–288. Search in Google Scholar
[24] J. Omielan, Answer to a question on Mathematics Stack Exchange, 19 August (2023), https://math.stackexchange.com/q/4761274. Search in Google Scholar
[25] C. E. Praeger and W. J. Shi, A characterization of some alternating and symmetric groups, Comm. Algebra 22 (1994), no. 5, 1507–1530. 10.1080/00927879408824920Search in Google Scholar
[26] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), no. 1, 105–145. 10.2307/1970423Search in Google Scholar
[27] A. V. Vasil’ev, On connection between the structure of a finite group and the properties of its graph, Siberian Math. J. 46 (2005), no. 3, 396–404. 10.1007/s11202-005-0042-xSearch in Google Scholar
[28] A. V. Vasil’ev and I. B. Gorshkov, On recognition of finite simple groups with connected prime graph, Sib. Math. J. 50 (2009), no. 2, 233–238. 10.1007/s11202-009-0027-2Search in Google Scholar
[29] A. V. Vasil’ev and E. P. Vdovin, An adjacency criterion for the prime graph of a finite simple group, Algebra Logic 44 (2005), no. 6, 381–406. 10.1007/s10469-005-0037-5Search in Google Scholar
[30] A. V. Vasil’ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logic 50 (2011), no. 4, 291–322. 10.1007/s10469-011-9143-8Search in Google Scholar
[31] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487–513. 10.1016/0021-8693(81)90218-0Search in Google Scholar
[32] R. A. Wilson, The Maximal Subgroups of the Lyons Group, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 433–436. 10.1017/S0305004100063003Search in Google Scholar
[33] A. V. Zavarnitsin, Recognition of finite groups by the prime graph, Algebra Logic 45 (2006), no. 4, 220–231. 10.1007/s10469-006-0020-9Search in Google Scholar
[34] M. R. Zinov’eva and V. D. Mazurov, On finite groups with disconnected prime graph, Proc. Steklov Inst. Math. 283 (2013), no. 1, 139–145. 10.1134/S0081543813090149Search in Google Scholar
[35] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284. 10.1007/BF01692444Search in Google Scholar
[36] The GAP Group, GAP – Groups, algorithms, and programming, version 4.12.1, 2022, https://www.gap-system.org. Search in Google Scholar
© 2026 Walter de Gruyter GmbH, Berlin/Boston