Abstract
Let 𝑁 be a normal subgroup of a finite group 𝐺.
Let
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SA 2864/1-2
Award Identifier / Grant number: SA 2864/4-1
Funding statement: The work is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/4-1).
Acknowledgements
Proposition 7 ii was found by Scheima Obeidi within the framework of her Master’s thesis written under the direction of the author. I appreciate some valuable comments of an anonymous referee.
-
Communicated by: Andrea Lucchini
References
[1] R. Baer, Absolute retracts in group theory, Bull. Amer. Math. Soc. 52 (1946), 501–506. 10.1090/S0002-9904-1946-08601-2Search in Google Scholar
[2] A. Brandis, Verschränkte Homomorphismen endlicher Gruppen, Math. Z. 162 (1978), no. 3, 205–217. 10.1007/BF01186363Search in Google Scholar
[3] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math. 4, Walter de Gruyter, Berlin, 1992. 10.1515/9783110870138Search in Google Scholar
[4] B. Eick, The converse of a theorem of W. Gaschütz on Frattini subgroups, Math. Z. 224 (1997), no. 1, 103–111. 10.1007/PL00004286Search in Google Scholar
[5] W. Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen, J. Reine Angew. Math. 190 (1952), 93–107. 10.1515/crll.1952.190.93Search in Google Scholar
[6] W. Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, Math. Z. 60 (1954), 274–286. 10.1007/BF01187377Search in Google Scholar
[7] B. Hartley and D. J. S. Robinson, On finite complete groups, Arch. Math. (Basel) 35 (1980), no. 1–2, 67–74. 10.1007/BF01235320Search in Google Scholar
[8] K. H. Hofmann, Zerfällung topologischer Gruppen, Math. Z. 84 (1964), 16–37. 10.1007/BF01112206Search in Google Scholar
[9] B. Huppert, Subnormale Untergruppen und 𝑝-Sylowgruppen, Acta Sci. Math. (Szeged) 22 (1961), 46–61. Search in Google Scholar
[10] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. 10.1007/978-3-642-64981-3Search in Google Scholar
[11] I. M. Isaacs, Finite Group Theory, Grad. Stud. Math. 92, American Mathematical Society, Providence, 2008. Search in Google Scholar
[12] J. Kirtland, Complementation of Normal Subgroups, De Gruyter, Berlin, 2017. 10.1515/9783110480214Search in Google Scholar
[13] F. Loonstra, Das System aller Erweiterungen einer Gruppe, Arch. Math. (Basel) 12 (1961), 262–279. 10.1007/BF01650559Search in Google Scholar
[14] A. Lucchini, F. Menegazzo and M. Morigi, On the existence of a complement for a finite simple group in its automorphism group, Illinois J. Math. 47 (2003), 395–418. 10.1215/ijm/1258488162Search in Google Scholar
[15] M. F. Newman, On a class of metabelian groups, Proc. Lond. Math. Soc. (3) 10 (1960), 354–364. 10.1112/plms/s3-10.1.354Search in Google Scholar
[16] J. S. Rose, Splitting properties of group extensions, Proc. Lond. Math. Soc. (3) 22 (1971), 1–23. 10.1112/plms/s3-22.1.1Search in Google Scholar
[17] J. J. Rotman, An Introduction to the Theory of Groups, Grad. Texts in Math. 148, Springer, New York, 1995. 10.1007/978-1-4612-4176-8Search in Google Scholar
[18] J. J. Rotman, An Introduction to Homological Algebra, Universitext, Springer, New York, 2009. 10.1007/b98977Search in Google Scholar
[19] W. R. Scott, Group Theory, Dover Publications, New York, 1987. Search in Google Scholar
[20] L. A. Šemetkov, The existence of Π-complements to normal subgroups of finite groups, Dokl. Akad. Nauk SSSR 195 (1970), 50–52; translation in Soviet Math. Dokl. 11 (1970), 1436–1438. Search in Google Scholar
[21] D. R. Taunt, On 𝐴-groups, Proc. Cambridge Philos. Soc. 45 (1949), 24–42. 10.1017/S0305004100000414Search in Google Scholar
[22] C. R. B. Wright, On complements to normal subgroups in finite solvable groups, Arch. Math. (Basel) 23 (1972), 125–132. 10.1007/BF01304854Search in Google Scholar
[23] M. Yonaha, A splitting condition for metabelian groups, Bull. Arts Sci. Div. Univ. Ryukyus Math. Natur. Sci. 7 (1964), 1–4. Search in Google Scholar
[24] H. J. Zassenhaus, The Theory of Groups, Chelsea, New York, 1958. Search in Google Scholar
[25] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020, (http://www.gap-system.org). Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Hochschild cohomology of symmetric groups and generating functions
- Stiefel–Whitney classes of representations of SL(2, 𝑞)
- A classification of finite primitive IBIS groups with alternating socle
- On the converse of Gaschütz’ complement theorem
- Conjugacy classes of maximal cyclic subgroups
- Morse boundaries of graphs of groups with finite edge groups
- The number of locally invariant orderings of a group
- On limits of betweenness relations
Articles in the same Issue
- Frontmatter
- Hochschild cohomology of symmetric groups and generating functions
- Stiefel–Whitney classes of representations of SL(2, 𝑞)
- A classification of finite primitive IBIS groups with alternating socle
- On the converse of Gaschütz’ complement theorem
- Conjugacy classes of maximal cyclic subgroups
- Morse boundaries of graphs of groups with finite edge groups
- The number of locally invariant orderings of a group
- On limits of betweenness relations