Home Symmetric powers of Nat SL(2,𝕂)
Article
Licensed
Unlicensed Requires Authentication

Symmetric powers of Nat SL(2,𝕂)

  • Adrien Deloro EMAIL logo
Published/Copyright: January 14, 2016

Abstract

In this paper, we identify the representations 𝕂[Xk,Xk-1Y,,Yk] among abstract [SL2(𝕂)]-modules. One result is on [SL2()]-modules of nilpotence length at most 5 and generalises a classical “quadratic” theorem by Smith and Timmesfeld; there are reasons to believe that this generalisation is close to optimal. Another result is on extending the linear structure on the module from the prime field to 𝕂. All proofs are by computation in the group ring using the Steinberg relations.

References

[1] Andersen H. H., Jørgensen J. and Landrock P., The projective indecomposable modules of SL(2,pn), Proc. Lond. Math. Soc. (3) 46 (1983), no. 1, 38–52. 10.1112/plms/s3-46.1.38Search in Google Scholar

[2] Cherlin G. and Deloro A., Small representations of SL2 in the finite Morley rank category, J. Symb. Log. 77 (2012), no. 3, 919–933. 10.2178/jsl/1344862167Search in Google Scholar

[3] Deloro A., Changes to a theorem of Timmesfeld. I: Quadratic actions, Confluentes Math. 5 (2013), no. 2, 23–41. Search in Google Scholar

[4] Deloro A., Symmetric powers of Nat𝔰𝔩2(𝕂), Comm. Algebra (2016), 10.1080/ 00927872.2014.900690. 10.1080/ 00927872.2014.900690Search in Google Scholar

[5] Grüninger M., On cubic action of a rank one group, preprint 2011, http://arxiv.org/abs/1106.2310v2. 10.1090/memo/1356Search in Google Scholar

[6] Lyndon R. C. and Schupp P. E., Combinatorial Group Theory, Classics Math., Springer, Berlin, 2001. 10.1007/978-3-642-61896-3Search in Google Scholar

[7] Serre J.-P., Trees, Springer Monogr. Math., Springer, Berlin, 2003. Search in Google Scholar

[8] Smith S. D., Quadratic action and the natural module for SL2(k), J. Algebra 127 (1989), no. 1, 155–162. 10.1016/0021-8693(89)90280-9Search in Google Scholar

[9] Timmesfeld F. G., Abstract Root Subgroups and Simple Groups of Lie Type, Monogr. Math. 95, Birkhäuser, Basel, 2001. 10.1007/978-3-0348-7594-3Search in Google Scholar

Received: 2015-4-30
Revised: 2015-10-1
Published Online: 2016-1-14
Published in Print: 2016-7-1

© 2016 by De Gruyter

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2015-0049/html
Scroll to top button