Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Hypercentral groups with all subgroups subnormal
-
Alessandro Martinelli
Veröffentlicht/Copyright:
8. Februar 2010
Abstract
We prove that a residually nilpotent group with all subgroups subnormal is hypercentral and we bound the hypercentral length of a hypercentral group with all subgroups subnormal.
Received: 2009-02-25
Revised: 2009-09-16
Published Online: 2010-02-08
Published in Print: 2010-September
© de Gruyter 2010
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- On triangle generation of finite groups of Lie type
- Hurwitz generation of the universal covering of Alt(n)
- A classification of certain finite double coset collections in the exceptional groups
- Recognizing SL2(q) in fusion systems
- Complete LR-structures on solvable Lie algebras
- Involutions and free pairs of bicyclic units in integral group rings
- Hypercentral groups with all subgroups subnormal
- On pro-S groups
- On groups acting on contractible spaces with stabilizers of prime-power order
Artikel in diesem Heft
- On triangle generation of finite groups of Lie type
- Hurwitz generation of the universal covering of Alt(n)
- A classification of certain finite double coset collections in the exceptional groups
- Recognizing SL2(q) in fusion systems
- Complete LR-structures on solvable Lie algebras
- Involutions and free pairs of bicyclic units in integral group rings
- Hypercentral groups with all subgroups subnormal
- On pro-S groups
- On groups acting on contractible spaces with stabilizers of prime-power order