Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On the subgroups with non-trivial Möbius number
-
Andrea Lucchini
Veröffentlicht/Copyright:
8. Februar 2010
Received: 2009-06-19
Revised: 2009-10-21
Published Online: 2010-02-08
Published in Print: 2010-July
© de Gruyter 2010
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- A note on the Green theory in the Clifford-theoretic context of a defect zero p-block of a normal subgroup of a finite group
- A note on a conjecture of K. Harada and strongly p-embedded Frobenius subgroups
- Carter–Payne homomorphisms and branching rules for endomorphism rings of Specht modules
- Some linear actions of finite groups with q′-orbits
- Semi-rational solvable groups
- Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection
- A note on the p-supersolvability of finite groups
- Vertex-transitive tournaments of order a product of two distinct primes
- On the derived length of the unit group of a group algebra
- On the subgroups with non-trivial Möbius number
- Subgroups of free groups and primitive elements
- Small index subgroups of the mapping class group
Artikel in diesem Heft
- A note on the Green theory in the Clifford-theoretic context of a defect zero p-block of a normal subgroup of a finite group
- A note on a conjecture of K. Harada and strongly p-embedded Frobenius subgroups
- Carter–Payne homomorphisms and branching rules for endomorphism rings of Specht modules
- Some linear actions of finite groups with q′-orbits
- Semi-rational solvable groups
- Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection
- A note on the p-supersolvability of finite groups
- Vertex-transitive tournaments of order a product of two distinct primes
- On the derived length of the unit group of a group algebra
- On the subgroups with non-trivial Möbius number
- Subgroups of free groups and primitive elements
- Small index subgroups of the mapping class group