Startseite Teaching Size and Power Properties of Hypothesis Tests Through Simulations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Teaching Size and Power Properties of Hypothesis Tests Through Simulations

  • Süleyman Taşpınar EMAIL logo und Osman Doğan
Veröffentlicht/Copyright: 22. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, we review the graphical methods suggested in Davidson and MacKinnon (Davidson, Russell, and James G. MacKinnon. 1998. “Graphical Methods for Investigating the Size and Power of Hypothesis Tests.” The Manchester School 66 (1): 1–26.) that can be used to investigate size and power properties of hypothesis tests for undergraduate and graduate econometrics courses. These methods can be used to assess finite sample properties of various hypothesis tests through simulation studies. In addition, these methods can be effectively used in classrooms to reinforce students’ understanding of basic hypothesis testing concepts such as Type I error, Type II error, size, power, p-values and under-or-over-sized tests. We illustrate the procedural aspects of these graphical methods through Monte Carlo experiments, and provide the implementation codes written in Matlab and R for the classroom applications.

JEL Classification: C13; C21; C31

Corresponding author: Süleyman Taşpınar, Economics Program, Queens College, The City University of New York, USA, E-mail:

Acknowledgments

This research was supported, in part, by a grant of computer time from the City University of New York High Performance Computing Center under NSF Grants CNS-0855217 and CNS-0958379.

Appendix

Listing 1: R Codes for P Value Plots and P Value Discrepancy Plots.

Listing 2: R Codes for Size-Power Curves.

References

Amemiya, Takeshi. 1985. Advanced Econometrics. Cambridge, MA, USA: Harvard University Press.Suche in Google Scholar

Anselin, Luc. 2001. “Rao’s Score Test in Spatial Econometrics.” Journal of Statistical Planning and Inference 97 (1): 113–139.10.1016/S0378-3758(00)00349-9Suche in Google Scholar

Anselin, Luc, Anil K. Bera, Raymond Florax, and Mann J. Yoon. 1996. “Simple Diagnostic Tests for Spatial Dependence.” Regional Science and Urban Economics 26 (1): 77–104.10.1016/0166-0462(95)02111-6Suche in Google Scholar

Arribas-Bel, Daniel, Julia Koschinsky, and PedroVasconcelos Amaral. 2012. “Improving the Multidimensional Comparison of Simulation Results: A Spatial Visualization Approach.” Letters in Spatial and Resource Sciences 5 (2): 55–63.10.1007/s12076-011-0064-xSuche in Google Scholar

Casella, George, and Roger L. Berger. 2002. Statistical Inference. Pacific Grove, CA, USA: Duxbury.Suche in Google Scholar

Davidson, Russell, and James G. MacKinnon. 1998. “Graphical Methods for Investigating the Size and Power of Hypothesis Tests.” The Manchester School 66 (1): 1–26.10.1111/1467-9957.00086Suche in Google Scholar

Dougherty, Christopher. 2011. Introduction to Econometrics. Oxford, UK: Oxford University Press.Suche in Google Scholar

Engle, Robert F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Ination.” Econometrica 50 (4): 987–1007.10.2307/1912773Suche in Google Scholar

Francq, Christian, and Jean-Michel Zakoian. 2011. GARCH Models: Structure, Statistical Inference and Financial Applications. West Sussex, UK: John Wiley & Sons.10.1002/9780470670057Suche in Google Scholar

Greene, William H. 2011. Econometric Analysis. 7th ed. Prentice-Hall International Editions. NJ, USA: Prentice Hall.Suche in Google Scholar

Gujarati, Damodar N., and Dawn C. Porter. 2009. Basic Econometrics. NY, USA: McGraw-Hill/Irwin.Suche in Google Scholar

Hendry, David F. 1984. “Chapter 16 Monte carlo Experimentation in Econometrics.” In Handbook of Econometrics, edited by Zvi Griliches and Michael D. Intriligator, Vol. 2, 937–976. Elsevier.10.1016/S1573-4412(84)02008-0Suche in Google Scholar

Johnston, Jack, and John Dinardo. 1996. Econometric Methods. 4th ed. OH, USA: McGraw-Hill/Irwin.Suche in Google Scholar

Ljung, G. M., and G. E. P. Box. 1978. “On a Measure of Lack of Fit in Time Series Models.” Biometrika 65 (2): 297–303.10.1093/biomet/65.2.297Suche in Google Scholar

Martin, Vance, Stan Hurn, and David Harris. 2012. Econometric Modelling with Time Series: Specification, Estimation and Testing. NY, USA: Cambridge University Press.10.1017/CBO9781139043205Suche in Google Scholar

McLeod, A. I., and W. K. Li. 1983. “Diagnostic Checking ARMA Time Series Models Using Squared-Residual Autocorrelations.” Journal of Time Series Analysis 4 (4): 269–273.10.1111/j.1467-9892.1983.tb00373.xSuche in Google Scholar

Sheppard, Kevin. 2007. UCSD GARCH Toolbox Version 2.0.10. http://www.kevinsheppard.com/UCSD_GARCH.Suche in Google Scholar

Stock, James H., and Mark W. Watson. 2010. Introduction to Econometrics. NJ, USA: Addison-Wesley.Suche in Google Scholar

Tsay, Ruey S. 2013. An Introduction to Analysis of Financial Data with R. NJ, USA: Wiley. ISBN: 978-0470890813.Suche in Google Scholar

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. London, UK: MIT Press.Suche in Google Scholar

Wooldridge, Jeffrey M. 2012. Introductory Econometrics: A Modern Approach. 5th ed. OH, USA: South-Western Cengage Learning.Suche in Google Scholar

Zellner, Arnold. 1983. “Chapter 2 Statistical Theory and Econometrics.” In Handbook of Econometrics, edited by Zvi Griliches and Michael D. Intriligator, Vol. 1, 67–178. Elsevier.10.1016/S1573-4412(83)01006-5Suche in Google Scholar

Published Online: 2016-1-22
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jem-2015-0014/html
Button zum nach oben scrollen