Startseite Network pharmacology based investigation of the multi target mechanisms of Murraya koenigii (curry leaves) in non-alcoholic steatohepatitis (NASH)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Network pharmacology based investigation of the multi target mechanisms of Murraya koenigii (curry leaves) in non-alcoholic steatohepatitis (NASH)

  • Harsh Kashyap , Jyoti Kumari und Manisha Khatri ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. August 2025

Abstract

Objectives

Non-alcoholic steatohepatitis (NASH) is a multifactorial chronic liver disease with limited treatment options. Murraya koenigii has reported hepato-protective effects against NASH in humans, but the bioactive compounds and mechanisms remain unknown. In this study, we explored the bioactive compounds of M. koenigii and their potential mechanisms for combating NASH using network pharmacology and molecular docking approach.

Methods

Using online platforms such as IMPPAT, GeneCards, KEGG, and DisGeNET, we identified the phytochemicals, target proteins, and genes associated with NASH. Through Venn diagram analysis, we determined 31 common targets between the bioactive compounds and NASH-related genes. Gene Ontology (GO) and KEGG pathway enrichment analyses further revealed the key targets and underlying mechanisms. Molecular docking validated the binding interactions between the identified phytochemicals and core target proteins.

Results

Nine key targets (NFKB, HSP90, TLR4, ESR1, STAT3, MTOR, HIF1A, PI3KA, and PKCD) were identified that interacts with 16 selected phytochemicals. Molecular docking studies indicated phytochemicals, Osthole and Spathulenol to be the promising binders to the core targets especially NF-kB and STAT3. The results represented the muti-target, multi-compound and multi-pathway mechanisms of M. koenigii against NASH.

Conclusions

This study provides the evidence for further research into the mechanisms of M. koenigii bioactive compounds as complementary therapies for NASH. Our study also identifies the novel drug candidates based on M. koenigii active compounds.


Corresponding author Dr. Manisha Khatri, Assistant Professor, Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India, E-mail:

Acknowledgments

The authors are thankful to Shaheed Rajguru College of Applied Sciences, University of Delhi, for providing the research facility to conduct the study.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors contributed to the study, accepted responsibility for the entire content of this manuscript, and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: There are no funding sources.

  7. Data availability: Not applicable.

References

1. Younossi, ZM, Stepanova, M, Ong, J, Trimble, G, AlQahtani, S, Younossi, I, et al.. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin Gastroenterol Hepatol 2021;19:580–9. https://doi.org/10.1016/j.cgh.2020.05.064.Suche in Google Scholar PubMed

2. Eslam, M, Newsome, PN, Sarin, SK, Anstee, QM, Targher, G, Romero-Gomez, M, et al.. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020;73:202–9. https://doi.org/10.1016/j.jhep.2020.03.039.Suche in Google Scholar PubMed

3. Kanwal, F, Shubrook, JH, Younossi, Z, Natarajan, Y, Bugianesi, E, Rinella, ME, et al.. Preparing for the NASH epidemic: a call to action. Gastroenterol 2021;161:1030–42e8. https://doi.org/10.1053/j.gastro.2021.04.074.Suche in Google Scholar PubMed

4. Chalasani, N, Younossi, Z, Lavine, JE, Charlton, M, Cusi, K, Rinella, M, et al.. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatol 2018;67:328–57. https://doi.org/10.1002/hep.29367.Suche in Google Scholar PubMed

5. Parthasarathy, G, Revelo, X, Malhi, H. Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun 2020;4:478–92. https://doi.org/10.1002/hep4.1479.Suche in Google Scholar PubMed PubMed Central

6. Sheka, AC, Adeyi, O, Thompson, J, Hameed, B, Crawford, PA, Ikramuddin, S. Nonalcoholic steatohepatitis: a review. JAMA 2020;323:1175–83. https://doi.org/10.1001/jama.2020.2298.Suche in Google Scholar PubMed

7. Bugianesi, E, Petta, S. NAFLD/NASH. J Hepatol 2022;77:549–50. https://doi.org/10.1016/j.jhep.2022.02.006.Suche in Google Scholar PubMed

8. Lambert, JE, Ramos-Roman, MA, Browning, JD, Parks, EJ. Increased de Novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterol 2014;146:726–35. https://doi.org/10.1053/j.gastro.2013.11.049.Suche in Google Scholar PubMed PubMed Central

9. Kawano, Y, Cohen, DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 2013;48:434–41. https://doi.org/10.1007/s00535-013-0758-5.Suche in Google Scholar PubMed PubMed Central

10. Koyama, Y, Brenner, DA. Liver inflammation and fibrosis. J Clin Invest 2017;127:55–64. https://doi.org/10.1172/jci88881.Suche in Google Scholar

11. Muthiah, MD, Sanyal, AJ. Current management of non-alcoholic steatohepatitis. Liver Int 2020;40:89–95. https://doi.org/10.1111/liv.14355.Suche in Google Scholar PubMed PubMed Central

12. Harrison, SA, Allen, AM, Dubourg, J, Noureddin, M, Alkhouri, N. Challenges and opportunities in NASH drug development. Nat Med 2023;29:562–73. https://doi.org/10.1038/s41591-023-02242-6.Suche in Google Scholar PubMed

13. Friedman, SL, Neuschwander-Tetri, BA, Rinella, M, Sanyal, AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018;24:908–22. https://doi.org/10.1038/s41591-018-0104-9.Suche in Google Scholar PubMed PubMed Central

14. Luo, Y, Zeng, Y, Peng, J, Zhang, K, Wag, L, Feng, T, et al.. Phytochemicals for the treatment of metabolic diseases: evidence from clinical studies. Biomed Pharmacother 2023;165:115274. https://doi.org/10.1016/j.biopha.2023.115274.Suche in Google Scholar PubMed

15. Ahluwalia, V, Sisodia, R, Walia, S, Sati, OP, Kumar, J, Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J Pest Sci 2004;2014:341–9. https://doi.org/10.1007/s10340-013-0542-6.Suche in Google Scholar

16. Balakrishnan, R, Vijayraja, D, Jo, SH, Ganesan, P, Su-Kim, I, Choi, DK. Medicinal profile, Phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants 2020;9:101. https://doi.org/10.3390/antiox9020101.Suche in Google Scholar PubMed PubMed Central

17. Bhandari, P. Curry leaf (Murraya koenigii) or Cure leaf: review of its curative properties. J Med Nutr Nutraceut 2012;2:92–7. https://doi.org/10.4103/2278-019x.101295.Suche in Google Scholar

18. Husna, F, Suyatna, FD, Arozal, W, Poerwaningsih, EH. Anti-diabetic potential of Murraya koenigii (L) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats. Drug Res 2018;68:631–6. https://doi.org/10.1055/a-0620-8210.Suche in Google Scholar PubMed

19. Yeap, SK, Abu, N, Mohamad, NE, Beh, BK, Ho, WY, Ebrahimi, S, et al.. Chemopreventive and immunomodulatory effects of Murraya koenigii aqueous extract on 4T1 breast cancer cell-challenged mice. BMC Compl Altern Med 2015;4:306. https://doi.org/10.1186/s12906-015-0832-z.Suche in Google Scholar PubMed PubMed Central

20. Ningappa, MB, Dhananjaya, BL, Dinesha, R, Harsha, R, Srinivas, L. Potent antibacterial property of APC protein from curry leaves (Murraya koenigii L.). Food Chem 2010;118:747–50. https://doi.org/10.1016/j.foodchem.2009.05.059.Suche in Google Scholar

21. Amna, U, Halimatussakdiah, PW, Saidi, N, Nasution, R. Evaluation of cytotoxic activity from Temurui (Murraya koenigii [Linn.] Spreng) leaf extracts against HeLa cell line using MTT assay. J Adv Pharm Technol Res 2019;10:51–5. https://doi.org/10.4103/japtr.japtr-373-18.Suche in Google Scholar

22. Mahipal, P, Pawar, RS. Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pac J Trop Med 2017;10:808–12. https://doi.org/10.1016/j.apjtm.2017.08.005.Suche in Google Scholar PubMed

23. Shah, P, Singh, SP, Kumar, A. Combined effect of hydroethanolic extracts of Murraya koenigii and Phyllanthus niruri leaves on paracetamol and ethanol-induced toxicity in HepG2 cell line. Curr Sci 2015;109:1320. https://doi.org/10.18520/v109/i7/1320-1344.Suche in Google Scholar

24. Syam, S, Abdul, AB, Sukari, MA, Mohan, S, Abdelwahab, SI, Wah, TS. The growth suppressing effects of girinimbine on hepg2 involve induction of apoptosis and cell cycle arrest. Molecules 2011;16:7155–70. https://doi.org/10.3390/molecules16087155.Suche in Google Scholar PubMed PubMed Central

25. Nguyen, TK, Phung, HH, Choi, WJ, Ahn, H. Network pharmacology and molecular docking study on the multi-target mechanisms of Aloe vera for Non-Alcoholic Steatohepatitis Treatment. Plants (Basel) 2022;11:3585. https://doi.org/10.3390/plants11243585.Suche in Google Scholar PubMed PubMed Central

26. Mohanraj, K, Karthikeyan, BS, Vivek-Ananth, RP, Bharath Chand, RP, Aparna, SR, Mangalapandi, P, et al.. IMPPAT: a curated database of Indian medicinal plants, Phytochemistry and therapeutics. Sci Rep 2018;8:4329. https://doi.org/10.1038/s41598-018-22631-z.Suche in Google Scholar PubMed PubMed Central

27. Daina, A, Michielin, O, Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.Suche in Google Scholar PubMed PubMed Central

28. Ru, J, Li, P, Wang, J, Zhou, W, Li, B, Huang, C, et al.. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf 2014;6:13. https://doi.org/10.1186/1758-2946-6-13.Suche in Google Scholar PubMed PubMed Central

29. Lipinski, CA, Lombardo, F, Dominy, BW, Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;3:26.Suche in Google Scholar

30. Banerjee, P, Eckert, AO, Schrey, AK, Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 2018;46:W257–63. https://doi.org/10.1093/nar/gky318.Suche in Google Scholar PubMed PubMed Central

31. Gallo, K, Goede, A, Preissner, R, Gohlke, BO. SuperPred 3.0: drug classification and target prediction-a machine learning approach. Nucleic Acids Res 2022;50:W726–31. https://doi.org/10.1093/nar/gkac297.Suche in Google Scholar PubMed PubMed Central

32. Stelzer, G, Rosen, N, Plaschkes, I, Zimmerman, S, Twik, M, Fishilevich, S, et al.. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform 2016;54:30–3. https://doi.org/10.1002/cpbi.5.Suche in Google Scholar PubMed

33. Sherman, BT, Hao, M, Qiu, J, Jiao, X, Baseler, MW, Lane, HC, et al.. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022;50:W216–21. https://doi.org/10.1093/nar/gkac194.Suche in Google Scholar PubMed PubMed Central

34. Piñero, J, Queralt-Rosinach, N, Bravo, À, Deu-Pons, J, Bauer-Mehren, A, Baron, M, et al.. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxf.) 2015:bav028. https://doi.org/10.1093/database/bav028.Suche in Google Scholar PubMed PubMed Central

35. Oliveros, JC. Venny. An interactive tool for comparing lists with Venn’s diagrams; 2007–2015. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html.Suche in Google Scholar

36. Tang, D, Chen, M, Huang, X, Zhang, G, Zeng, L, Zhang, G, et al.. SRplot: a free online platform for data visualization and graphing. PLoS One 2023;18:e0294236. https://doi.org/10.1371/journal.pone.0294236.Suche in Google Scholar PubMed PubMed Central

37. Szklarczyk, D, Gable, AL, Nastou, KC, Lyon, D, Kirsch, R, Pyysalo, S, et al.. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49:D605–12. https://doi.org/10.1093/nar/gkaa1074.Suche in Google Scholar PubMed PubMed Central

38. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.Suche in Google Scholar PubMed PubMed Central

39. Eberhardt, J, Santos-Martins, D, Tillack, AF, Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 2021;61. https://doi.org/10.1021/acs.jcim.1c00203.Suche in Google Scholar PubMed PubMed Central

40. Trott, O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 2010;31:455–61. https://doi.org/10.1002/jcc.21334.Suche in Google Scholar PubMed PubMed Central

41. Goodsell, DS, Zardecki, C, Di Costanzo, L, Duarte, JM, Hudson, BP, Persikova, I, et al.. RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci 2020;29:52–65. https://doi.org/10.1002/pro.3730.Suche in Google Scholar PubMed PubMed Central

42. Kitchen, DB, Decornez, H, Furr, JR, Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3:935–49. https://doi.org/10.1038/nrd1549.Suche in Google Scholar PubMed

43. Leach, AR, Shoichet, BK, Peishoff, CE. Prediction of protein–ligand interactions. Docking and scoring: successes and gaps. J Med Chem 2006;49:5851–5. https://doi.org/10.1021/jm060999m.Suche in Google Scholar PubMed

44. Shaker, B, Tran, KM, Jung, C, Na, D. Introduction of advanced methods for structure-based drug discovery. Curr Bioinf 2021;16:760–75. https://doi.org/10.2174/1574893615999200703113200.Suche in Google Scholar

45. Franceschetti, L, Bonomini, F, Rodella, LF, Rezzani, R. Critical role of NFκB in the pathogenesis of non-alcoholic fatty liver disease: a widespread key regulator. Curr Mol Med 2021;21:495–505. https://doi.org/10.2174/1566524020666201026162343.Suche in Google Scholar PubMed

46. Luci, C, Bourinet, M, Leclere, PS, Anty, R, Gual, P. Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Front Endocrinol 2020;11:597648. https://doi.org/10.3389/fendo.2020.597648.Suche in Google Scholar PubMed PubMed Central

47. Adorini, L, Trauner, M. FXR agonists in NASH treatment. J Hepatol 2023;79:1344–57. https://doi.org/10.1016/j.jhep.2023.07.034.Suche in Google Scholar PubMed

48. Francque, S, Bedossa, P, Ratziu, V, Anstee, QM, Bugianesi, E, Sanyal, AJ, et al.. A randomized controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med 2021;385:1547–58. https://doi.org/10.1056/nejmoa2036205.Suche in Google Scholar PubMed

49. Harrison, SA, Bashir, MR, Guy, CD, Zhou, R, Moylan, CA, Frias, JP, et al.. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomized, double-blind, placebo-controlled, phase 2 trial. Lancet 2019;394:2012–24. https://doi.org/10.1016/s0140-6736-19-32517-6.Suche in Google Scholar

50. Ahluwalia, V, Sisodia, R, Walia, S, Sati, OP, Kumar, J, Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J Pest Sci 2014;87:341–9. https://doi.org/10.1007/s10340-013-0542-6.Suche in Google Scholar

51. Rautela, R, Das, GK, Khan, FA, Prasad, S, Kumar, A, Prasad, JK, et al.. Antibacterial, anti-inflammatory and antioxidant effects of Aegle marmelos and Murraya koenigii in dairy cows with endometritis. Livest Sci 2018;214:142–8. https://doi.org/10.1016/j.livsci.2018.05.015.Suche in Google Scholar

52. Franyoto, YD, Nurrochmad, A, Fakhrudin, N, Murraya koenigii, L, Spreng. An updated review of chemical composition, pharmacological effects, and toxicity studies. J Appl Pharm Sci 2024;14:011–27.10.7324/JAPS.2024.169254Suche in Google Scholar

53. Zheng, Q, Kawaguchi, M, Mikami, H, Diao, P, Zhang, X, Zhang, Z, et al.. Establishment of novel mouse model of dietary NASH rapidly progressing into liver cirrhosis and tumors. Cancers 2023;15:3744. https://doi.org/10.3390/cancers15143744.Suche in Google Scholar PubMed PubMed Central

54. Allameh, A, Niayesh-Mehr, R, Aliarab, A, Sebastiani, G, Pantopoulos, K. Oxidative stress in liver pathophysiology and disease. Antioxidants 2023;12:1653. https://doi.org/10.3390/antiox12091653.Suche in Google Scholar PubMed PubMed Central

55. Tan, MA, Sharma, N, An, SSA. Multi-target approach of Murraya koenigii leaves in treating neurodegenerative diseases. Pharmaceuticals (Basel) 2022;15:188. https://doi.org/10.3390/ph15020188.Suche in Google Scholar PubMed PubMed Central

56. Kang, H, Kim, B. Bioactive Compounds as inhibitors of inflammation, oxidative stress and metabolic dysfunctions via regulation of cellular redox balance and histone acetylation State. Foods 2023;12:925. https://doi.org/10.3390/foods12050925.Suche in Google Scholar PubMed PubMed Central

57. Han, YH, Shin, KO, Kim, JY, Khadka, DB, Kim, HJ, Lee, YM, et al.. A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. J Clin Investig 2019;129:1684–98. https://doi.org/10.1172/jci124219.Suche in Google Scholar

58. Zhao, J, Qi, Y, Yu, Y. STAT3: a key regulator in liver fibrosis. Ann Hepatol 2021;21:100224. https://doi.org/10.1016/j.aohep.2020.06.010.Suche in Google Scholar PubMed

59. Sathaye, S, Amin, P, Mehta, V, Zala, V, Kulkarni, R, Kaur, H, et al.. Immunomodulatory activity of aqueous extract of Murraya Koenigii, L in experimental animals. Int J Toxicol Pharmacol Res 2011;3:7–12.Suche in Google Scholar

60. Parimi, BN, Mopuri, R, Meriga, B. The protective effect of Murraya koenigii leaves against carbon tetrachloride-induced hepatic damage in rats. J Coastal Life Med 2014;2:640–5.Suche in Google Scholar

61. Salwe, KJ, Manimekalai, K. Hepatoprotective and antioxidant activity of Murraya Koenigii leaves extract against paracetamol-induced hepatotoxicity in rats. Int J Basic Clin Pharmacol 2017;6:606–10.10.18203/2319-2003.ijbcp20172044Suche in Google Scholar

Received: 2025-04-21
Accepted: 2025-08-06
Published Online: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jcim-2025-0146/html
Button zum nach oben scrollen