Abstract
The wide pollution of Endocrine Disrupting Chemicals (EDCs) in the aquatic environment is of great concern to aquatic organisms and human health. Previous researches indicated that the main sources of the EDCs were sewage treatment plants (STPs). In this paper, we reported treatment results of synthetic wastewater containing several EDCs by a three-dimensional electrode system. Pt/Ti granular electrodes were used to enlarge the effective surface area of the anode. Concentrations of EDCs were prepared in the range of 1-1000 μg/l. In batch and continuous treatments, EDCs were successfully removed by the present system. Electric current and recycling flow rate played important roles for removal efficiency and reactor design. Energy consumptions were in the range of 0.1-10 Wh/m3. Furthermore, a selective removal of EDCs was demonstrated. From these results, we concluded that electrochemical oxidation process using the system has a potential for the treatment of trace EDCs.
© 2016 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation