Abstract
Treatment of an aged raw landfill leachate with H2O2/UV was performed to find an effective way to cope with large refractory organic compounds. A 23 factorial design experiment, using leachate pH, H2O2 dose and UV fluence as factors, and COD, BOD5 and color as measured responses, showed that UV fluence was significant factor for COD and color reduction and BOD5 improvement; H2O2 dose was important for both COD and color reduction; and leachate pH was only significant to COD reduction. Then, the aged raw leachate and the membrane fractionated leachate samples were oxidized with H2O2/UV, and COD, BOD5, color and molecular size distribution were monitored. The COD removal efficiency of H2O2/UV on the fractionated samples varied from 12% to 33% depending on the sample initial quality. H2O2/UV reduced color effectively for the particle-free samples. After H2O2/UV treatment, BOD5 increase of the particle-free samples seemed to be only dependent on UV fluence. Molecular size distribution analysis demonstrated that no new peaks were observed after treatment except the sample of 0.45 μm to 10k Da. Particles larger than 0.45 μm seemed to hinder the reduction of COD and large molecule peaks.
© 2016 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation