Abstract
The rates and products of photooxidation of ibuprofen, clofibric acid, diclofenac and naproxen, pharmaceuticals emerging as contaminants in wastewater, were examined in UV-irradiated TiO2 suspensions. Emphasis was on ibuprofen absorption on TiO2 and its oxidation rate and pathways. Both absorption and oxidation of ibuprofen decreased with increasing pH above 3, consistent with preadsorption of ibuprofen on TiO2 as an essential step in the oxidation process. Sec-butylacetophenone and sec-butylphenethyl alcohol were identified as products indicating that part of the oxidation proceeds via electron transfer from the carboxylate group to valence band holes on TiO2. Ring oxidation products were not found. Oxidation half lives of 0.1 mM naproxen, ibuprofen, clofibric acid, and diclofenac in 0.4% TiO2 were 7, 14, 16 and 20 min, respectively; kinetics follow Langmuir-Hinshelwood rate laws.
© 2016 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation