Abstract
The Electro-Fenton is one of the processes based on the Fenton reaction, which have been investigated to improve the efficiency of classical Fenton treatment. The Electro-Fenton has been shown to be efficient in the degradation of many organic compounds. However, generally there is no true estimation of its efficiency compared to that of the classical Fenton process. This study aimed to compare the two processes using an experimental approach and modelling. First of all, degradation of hydrogen peroxide (externally applied) was studied. It was shown that the Electro-Fenton process needs smaller quantities of iron (5 times less) than the Fenton to decompose the same quantity of hydrogen peroxide. The Electro-Fenton process may also produce hydrogen peroxide in situ (oxygen reduction). This leads to an important reduction in the consumption of chemicals (hydrogen peroxide, small quantities of iron salt). Finally, a study of the degradation of phenol, when hydrogen peroxide was electrogenerated has shown the greater efficiency of Electro-Fenton compared to the Fenton process.
© 2016 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation