Abstract
In this work the kinetics of Wet Oxidation reactions are taken under investigation. Two different types of wastewater were chosen, pulp and paper mill wastewater and model solutions containing 4-chlorophenol. Concerning Wet Oxidation of pulp and paper mill wastewater, two kinetic models were tested, the “Generalized Kinetic Model for Wet Oxidation of Organic Compounds” from Li, and the “Lumped Kinetic Model for Wastewater Organic Burden Biodegradability Prediction” proposed by Verenich and Kallas. The first model was found to be suitable to predict the COD (Chemical Oxygen Demand) removal throughout the reaction when working at the lowest temperatures i.e., 433-443 K. On the other hand, the kinetic model of Verenich and Kallas was able to predict the biodegradability of the wastewater throughout the reaction in all ranges of temperatures studied (433-473 K). Regarding the kinetics of Wet Oxidation reactions of solutions containing 4-chlorophenol, a model was suggested taking into account the existence of an induction period previous to the oxidation in which the hydroxyl radicals are generated. This model showed good performance when predicting the 4-chlorophenol (4-CP) concentration during the reaction.
© 2016 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation
Articles in the same Issue
- Preface
- Removal of PAHs from Creosote Oil Contaminated Soil by Addition of Concentrated H2O2 and Biodegradation
- Kinetics of Wet Oxidation Reactions
- Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton
- Experimental and Modelling Approach for the Comparison of Fenton and Electro-Fenton Processes. Preliminary Results
- TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2
- Effects of Carbon Coating on TinO2n-1 for Decomposition of Iminoctadine Triacetate in Aqueous Solution under Visible Light
- Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air
- Photocatalytic Oxidation of Emerging Contaminants: Kinetics and Pathways for Photocatalytic Oxidation of Pharmaceutical Compounds
- Photocatalytic Degradation of four Textile Azo Dyes in Aqueous TiO2 Suspensions: Practical Outcomes and Revisited Pathways
- Decolouration of Dye Solutions Using Photoelectrocatalysis and Photocatalysis
- Aged Raw Landfill Leachate: Membrane Fractionation, H2O2/UV Treatment and Molecular Size Distribution Analysis
- Electrochemical Treatment of Trace Endocrine Disrupting Chemicals with a Three-Dimensional Electrode System
- Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide
- Hexavalent Chromium Remediation by Bore-Hole Placed Reduction Barriers and Monitored Natural Attenuation