Investigations on different spectral techniques to improve the gravimetric geoid model for the central part of Java, Indonesia, using terrestrial, airborne, and altimetric-based gravity observations
-
Brian Bramanto
, Rahayu Lestari
, Arisauna M. Pahlevi , Kosasih Prijatna , Agustina N. Syafarianty , Dina A. Sarsito , Vera Sadarviana , Widy Putra , Bagas Triarahmadhana , Teguh P. Sidiq , Safirotul Huda , Febriananda Ladivanov , Muhammad S. Fathulhuda , Irwan Gumilar and Dudy D. Wijaya
Abstract
In the modern era, deriving accurate geoid models is crucial for various engineering and geoscience applications. The geoid facilitates the transformation of ellipsoidal heights from Global Navigation Satellite System (GNSS) measurements to orthometric heights and aids in determining geostrophic ocean surface currents. This study assesses different spectral methods, including two-dimensional Fast Fourier Transform (FFT), multiband spherical FFT, and one-dimensional FFT, for evaluating the Stokes’ function in gedsaata and Stokes’ kernel. The geoid modeling process is divided into three major stages: gravity data assessment, regularization of scattered gravity datasets onto the topographical surface, and geoid computation under the Remove-Compute-Restore (RCR) mode with Residual Terrain Model (RTM) reduction. Results indicate that the multiband spherical FFT method outperforms others, leading to the adoption of the Institut Teknologi Bandung-Central Java 2024 (ITBCJ24) geoid model, which achieves a root mean squared error (RMSE) of 0.068 m relative to GNSS-leveling observations and a relative accuracy of 4.409 ppm. The study also highlights the significance of gravity data coverage and distribution by comparing geoid models derived from terrestrial, airborne, and altimetric-derived gravity observations against the model relying solely on terrestrial gravity observations. Although the latter performs similarly at validation points, prominent discrepancies in geoidal height outside the validation region highlight the importance of uniform and dense gravity data coverage. Finally, the ITBCJ24 geoid model is compared to existing geoid models in Indonesia, showcasing its superiority with RMSE values of 0.117 m and 0.166 m for Indonesia’s regional geoid model of INAGEOID2020 and Earth Geopotential Model 2008 (EGM2008) model, respectively.
Funding source: PPMI FITB 2025
Acknowledgments
We acknowledge the Geospatial Information Agency of Indonesia (BIG) for providing the dataset used in this study. In addition, BB acknowledges the PPMI FITB 2025 Program of the Faculty of Earth Sciences and Technology, Institut Teknologi Bandung.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Conceptualization: BB. Methodology: BB. Software: BB, RL. Validation: BB, RL. Formal analysis: BB, RL. Investigation: BB, RL. Resources: AP, AS, WP, BT, SH, FL. Data Curation: AP, AS, WP, BT, SH, FL. Writing - Original Draft: BB, RL. Writing - Review & Editing: KP, DS, VS, MF, TS, IG, DW. Visualization: RL.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: We have no conflicts of interest to disclose.
-
Research funding: This study was funded by the PPMI FITB 2025 program of the Faculty of Earth Sciences and Technology, Institut Teknologi Bandung.
-
Data availability: The terrestrial and airborne gravity datasets were kindly provided by the Geospatial Information Agency of Indonesia (BIG) and can be obtained upon a reasonable request. The global marine gravity model DTU17 derived from altimetric observations is developed by the Danmarks Tekniske Universitet (DTU Space) and can be publicly accessed through ftp.space.dtu.dk/pub/DTU17/. The marine gravity dataset used to assess the performance of DTU17 in this study can be requested from the International Gravimetric Bureau (https://bgi.obs-mip.fr/).
References
1. Mora, MJM, González, CAL, Hidalgo, DAE, Toulkeridis, T. Determination of altitudes of the three main ecuadorian summits through gnss positioning. Geod Geodyn 2022;13:343–51.10.1016/j.geog.2021.11.006Search in Google Scholar
2. Szombara, S, Róg, M, Kozioł, K, Maciuk, K, Skorupa, B, Kudrys, J, et al.. The highest peaks of the mountains: comparing the use of gnss, lidar point clouds, dtms, databases, maps, and historical sources. Energies 2021;14:5731. https://doi.org/10.3390/en14185731.Search in Google Scholar
3. Muhammad, S, Tian, L. Assessment of ArcGIS based extraction of geoidal undulation compared to National Geospatial Intelligence Agency (NGA) model – a case study. J Appl Geodesy 2020;14:77–81. https://doi.org/10.1515/jag-2019-0030.Search in Google Scholar
4. Doglioni, F, Ricker, R, Rabe, B, Barth, A, Troupin, C, Kanzow, T. Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the arctic ocean (2011–2020). Earth Syst Sci Data 2023;15:225–63. https://doi.org/10.5194/essd-15-225-2023.Search in Google Scholar
5. Idžanović, M, Ophaug, V, Andersen, O B. The coastal mean dynamic topography in Norway observed by cryosat-2 and goce. Geophys Res Lett 2017;44:5609–17. https://doi.org/10.1002/2017gl073777.Search in Google Scholar
6. Hofmann-Wellenhof, B, Moritz, H. Physical geodesy. Wien–New York: Springer; 2005.Search in Google Scholar
7. Heiskanen, WA, Moritz, H. Physical geodesy. San Francisco: Freeman and Company; 1967.10.1007/BF02525647Search in Google Scholar
8. Tusat, E, Mikailsoy, F. An investigation of the criteria used to select the polynomial models employed in local gnss/leveling geoid determination studies. Arab J Geosci 2018;11:801–12. https://doi.org/10.1007/s12517-018-4176-0.Search in Google Scholar
9. Matsuo, K, Kuroishi, Y. Refinement of a gravimetric geoid model for Japan using goce and an updated regional gravity field model. Earth Planets Space 2020;72:33. https://doi.org/10.1186/s40623-020-01158-6.Search in Google Scholar
10. Pa’suya, MF, Din, AHM, Abbak, RA, Hamden, MH, Yazid, NM, Aziz, MAC, et al.. Hybrid geoid model over peninsular Malaysia (pmhg2020) using two approaches. Stud Geophys Geod 2022;66:98–123. https://doi.org/10.1007/s11200-021-0769-2.Search in Google Scholar
11. Hwang, C, Hsu, H-J, Featherstone, WE, Cheng, C-C, Yang, M, Huang, W, et al.. New gravimetric-only and hybrid geoid models of taiwan for height modernisation, cross-island datum connection and airborne lidar mapping. J Geod 2020;94:83–9. https://doi.org/10.1007/s00190-020-01412-5.Search in Google Scholar
12. Lestari, R, Bramanto, B, Prijatna, K, Pahlevi, AM, Putra, W, Muntaha, RIS, et al.. Local geoid modeling in the central part of java, Indonesia, using terrestrial-based gravity observations. Geod Geodyn 2023;14:231–43. https://doi.org/10.1016/j.geog.2022.11.007.Search in Google Scholar
13. Kotsakis, C. Transforming ellipsoidal heights and geoid undulations between different geodetic reference frames. J Geod 2008;82:249–60. https://doi.org/10.1007/s00190-007-0179-4.Search in Google Scholar
14. Bramanto, B, Prijatna, K, Fathulhuda, MS, Pahlevi, AM. Gravimetric geoid modeling by Stokes and second helmert’s condensation method in yogyakarta, Indonesia. Geodesy Sustain Earth 2022;154:147–53. https://doi.org/10.1007/1345_2022_149.Search in Google Scholar
15. Pavlis, NK, Holmes, SA, Kenyon, SC, Factor, JK. The development and evaluation of the earth gravitational model 2008 (egm2008). J Geophys Res 2012;117:1–38. https://doi.org/10.1029/2011jb008916.Search in Google Scholar
16. Sarsito, DA, Bramanto, B, Andreas, H, Pradipta, D, Syahrullah, M. Pseudo height anomaly over Indonesia in respect of grace gravity pseudo height anomaly over Indonesia in respect of grace gravity. IOP Conf Ser Earth Environ Sci 2020;500:012044. https://doi.org/10.1088/1755-1315/500/1/012044.Search in Google Scholar
17. Foroughi, I, Goli, M, Pagiatakis, S, Ferguson, S, Novák, P. Data requirements for the determination of a sub-centimetre geoid. Earth Sci Rev 2023;239:104326–4. https://doi.org/10.1016/j.earscirev.2023.104326.Search in Google Scholar
18. Oršulić, OB, Markovinović, D, Varga, M, Bašić, T. The impact of terrestrial gravity data density on geoid accuracy: case study bilogora in Croatia. Surv Rev 2020;52:299–308.10.1080/00396265.2018.1562747Search in Google Scholar
19. Sideris, M G. Geoid determination by FFT techniques. Lect Notes Earth Syst Sci 2013;110:453–516. https://doi.org/10.1007/978-3-540-74700-0_10.Search in Google Scholar
20. Schwarz, K, Sideris, M, Forsberg, R. The use of fft techniques in physical geodesy. Geophys J Int 1990;100:485–514. https://doi.org/10.1111/j.1365-246x.1990.tb00701.x.Search in Google Scholar
21. Ghanem, E, Jiancheng, L. Discussion on some fft problems to determine the geoid. Geo-Spat Inf Sci 2000;3:53–7. https://doi.org/10.1007/bf02826624.Search in Google Scholar
22. Tziavos, IN. Comparisons of spectral techniques for geoid computations over large regions. J Geod 1996;70:357–73. https://doi.org/10.1007/bf00868188.Search in Google Scholar
23. Sideris, MG, She, BB. A new, high-resolution geoid for Canada and part of the u.s. by the 1d-fft method. Bull Geodesique 1995;69:92–108. https://doi.org/10.1007/bf00819555.Search in Google Scholar
24. Bramanto, B, Prijatna, K, Pahlevi, AM, Sarsito, DA, Dahrin, D, Variandy, ED, et al.. Determination of gravity anomalies in java, Indonesia, from airborne gravity survey. Terr Atmospheric Ocean Sci 2021;32. https://doi.org/10.3319/tao.2021.06.04.01.Search in Google Scholar
25. Andersen, OB, Knudsen, P. The dtu17 global marine gravity field: first validation results. Fiducial Ref Meas Altimetry 2019;150:83–7. https://doi.org/10.1007/1345_2019_65.Search in Google Scholar
26. Vaníček, P, Featherstone, WE. Performance of three types of Stokes’s kernel in the combined solution for the geoid. J Geod 1998;72:684–97. https://doi.org/10.1007/s001900050209.Search in Google Scholar
27. Featherstone, WE, Evans, JD, Olliver, JG. A meissl-modified vaníček and kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geod 1998a;72:154–60. https://doi.org/10.1007/s001900050157.Search in Google Scholar
28. Wong, L, Gore, R. Accuracy of geoid heights from modified Stokes kernels. Geophys J Int 1969;18:81–91. https://doi.org/10.1111/j.1365-246x.1969.tb00264.x.Search in Google Scholar
29. Paraskevas, M, Papadopoulos, N, Ampatzidis, D. Geoid model determination for the hellenic area “hellas geoid 2023”. Acta Geod Geophys 2023;7.10.1007/s40328-023-00416-9Search in Google Scholar
30. Shehri, AA, Mogren, S, Ibrahim, E, Zaki, A. Determination of a gravimetric geoid model for eastern province in the kingdom of Saudi Arabia. J Appl Geod 2023;0:8.Search in Google Scholar
31. Zaki, A, Al-Ajami, H, Rabah, M, Saber, A, El-Ashquer, M. Refinement of the Kuwait geoid using the modified Stokes’ kernel and airy-heiskanen isostatic reduction for gis and geomatics applications. Egypt J Remote Sens Space Sci 2023;26:333–40. https://doi.org/10.1016/j.ejrs.2023.05.001.Search in Google Scholar
32. Zaki, A, Mogren, S. A high-resolution gravimetric geoid model for kingdom of Saudi A rabia. Surv Rev 2022a;54:375–90. https://doi.org/10.1080/00396265.2021.1944544.Search in Google Scholar
33. Scintrex. CG-6 Autograv gravity meter operation manual. Concord, Ontario, Canada: Scintrex; 2018.Search in Google Scholar
34. Scintrex. Cg-5 operation manual. Concord, Ontario, Canada: Scintrex; 2012.Search in Google Scholar
35. Micro-g. A-10 portable gravimeter user’s manual. Lafayette, Colorado, USA: Micro-g LaCoste; 2008.Search in Google Scholar
36. Krynski, J, Dykowski, P, Sekowski, M, Mäkinen, J. On the estimate of accuracy and reliability of the a10 absolute gravimeter free-fall gravimeter. Earth Edge: Sci Sustain Planet 2014:297–302.10.1007/978-3-642-37222-3_39Search in Google Scholar
37. Longman, IM. Formulas for computing the tidal accelerations due to the moon and the sun. J Geophys Res 1959;64:2351–5. https://doi.org/10.1029/jz064i012p02351.Search in Google Scholar
38. Krzyżek, R, Kudrys, J. Accuracy of gnss rtk/nrtk height difference measurement. Appl Geomat 2022;14:491–9. https://doi.org/10.1007/s12518-022-00450-2.Search in Google Scholar
39. Štroner, M, Urban, R, Reindl, T, Seidl, J, Brouček, J. Evaluation of the georeferencing accuracy of a photogrammetric model using a quadrocopter with onboard gnss rtk. Sensors 2020;20:2318. https://doi.org/10.3390/s20082318.Search in Google Scholar PubMed PubMed Central
40. Wessel, P, Smith, WHF. A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res Solid 1996;101:8741–3. https://doi.org/10.1029/96jb00104.Search in Google Scholar
41. Forsberg, R, Olesen, AV, Einarsson, I, Manandhar, N, Shreshta, K. Geoid of Nepal from airborne gravity survey. Earth Edge: Sci Sustain Planet 2014;139:521–7. https://doi.org/10.1007/978-3-642-37222-3_69.Search in Google Scholar
42. Hwang, C, shen Hsiao, Y, chang Shih, H, Yang, M, hwa Chen, K, Forsberg, R, et al.. Geodetic and geophysical results from a taiwan airborne gravity survey: data reduction and accuracy assessment. J Geophys Res 2007;112:1–14. https://doi.org/10.1029/2005jb004220.Search in Google Scholar
43. L&R Air-Sea Gravity System II. Model “S” air-sea dynamic gravity meter system, LaCoste & Romberg instruction manual. Houston, Texas, USA: LaCoste & Romberg; 2003.Search in Google Scholar
44. Valliant, H. The lacoste & romberg air/sea gravity meter: an overview. In: Handbook of Geophysical Exploration at Sea. Boca Raton, Florida, USA: CRC Press; 1991.Search in Google Scholar
45. Neumeyer, J, Schäfer, U, Kremer, J, Pflug, H, Xu, G. Derivation of gravity anomalies from airborne gravimeter and imu recordings-validation with regional analytic models using ground and satellite gravity data. J Geodyn 2009;47:191–200.10.1016/j.jog.2008.08.001Search in Google Scholar
46. Hwang, C, shen Hsiao, Y, chang Shih, H. Data reduction in scalar airborne gravimetry: theory, software and case study in taiwan. Comput Geosci 2006;32:1573–84. https://doi.org/10.1016/j.cageo.2006.02.015.Search in Google Scholar
47. Sun, Z-M, Xia, Z-R. Design of fir lowpass differentiator and its applications in airborne gravimetry. Chin J Geophys 2000;43:850–5.10.1002/cjg2.106Search in Google Scholar
48. Wei, M, Schwarz, K. Flight test results from a strapdown airborne gravity system. J Geod 1998;72:323–32. https://doi.org/10.1007/s001900050171.Search in Google Scholar
49. Andersen, O B, Knudsen, P. The DTU17 global marine gravity field: first validation results. Int Assoc Geodes Symp 2020;150:83–7. https://doi.org/10.1007/1345_2019_65.Search in Google Scholar
50. Lyard, FH, Allain, DJ, Cancet, M, Carrère, L, Picot, N. Fes2014 global ocean tide atlas: design and performance. Ocean Sci 2021;17:615–49. https://doi.org/10.5194/os-17-615-2021.Search in Google Scholar
51. Stammer, D, Ray, R D, Andersen, O B, Arbic, B K, Bosch, W, Carrère, L, et al.. Accuracy assessment of global barotropic ocean tide models. Rev Geophys 2014;52:243–82. https://doi.org/10.1002/2014rg000450.Search in Google Scholar
52. International Gravimetric Bureau. Global sea gravity database. Tech Rep. International Gravimetric Bureau 2023.Search in Google Scholar
53. Poutanen, M, Rózsa, S. The geodesist’s handbook 2020. J Geod 2020;94:109. https://doi.org/10.1007/s00190-020-01434-z.Search in Google Scholar
54. Noh, M-J, Howat, IM. Automated stereo-photogrammetric dem generation at high latitudes: surface extraction with tin-based search-space minimization (setsm) validation and demonstration over glaciated regions. GIScience Remote Sens 2015;52:198–217. https://doi.org/10.1080/15481603.2015.1008621.Search in Google Scholar
55. Soni, C, Chaudhary, A, Sharma, U, Sharma, C. Satellite radar interferometry for dem generation using sentinel-1a imagery. Innovations in Computational Intelligence and Computer Vision 2021;1189:26–33. https://doi.org/10.1007/978-981-15-6067-5_4.Search in Google Scholar
56. Farr, TG, Rosen, P A, Caro, E, Crippen, R, Duren, R, Hensley, S, et al.. The shuttle radar topography mission. Rev Geophys 2007;45. https://doi.org/10.1029/2005rg000183.Search in Google Scholar
57. Tozer, B, Sandwell, DT, Smith, WHF, Olson, C, Beale, JR, Wessel, P. Global bathymetry and topography at 15 arc sec: Srtm15+. Earth Space Sci 2019;6:1847–64. https://doi.org/10.1029/2019ea000658.Search in Google Scholar
58. Varbla, S. The influence of bathymetry on regional marine geoid modeling in northern europe. J Mar Sci Eng 2022;10:793. https://doi.org/10.3390/jmse10060793.Search in Google Scholar
59. Li, X, Lin, M, Krcmaric, J, Carignan, K. Bathymetric effect on geoid modeling over the great lakes area. Earth Planets Space 2024;76:14. https://doi.org/10.1186/s40623-024-01961-5.Search in Google Scholar
60. Doğanalp, S. Assessment of recent global geopotential models based on the auvergne test area data. Eng Res Express 2022;4:045017. https://doi.org/10.1088/2631-8695/ac9fab.Search in Google Scholar
61. Köhnlein, W. The earth’s gravitational field as derived from a combination of satellite data with gravity data. Tech Rep. Smithsonian Astrophysical Observatory Cambridge, Massachusetts 02138 1967.Search in Google Scholar
62. Lemoine, FG, Smith, DE, Kunz, L, Smith, R, Pavlis, EC, Pavlis, NK, et al.. The development of the joint nasa gsfc and the national imagery and mapping agency (nima) geopotential model egm96. Tech Rep. NASA Goddard Space Flight Center 1998.10.1007/978-3-662-03482-8_62Search in Google Scholar
63. Zingerle, P, Pail, R, Gruber, T, Oikonomidou, X. The combined global gravity field model xgm2019e. J Geod 2020;94:66–7. https://doi.org/10.1007/s00190-020-01398-0.Search in Google Scholar
64. Foerste, C, Bruinsma, S, Abrykosov, O, Lemoine, J-M, Marty, JC, Flechtner, F, et al.. Eigen-6c4 the latest combined global gravity field model including goce data up to degree and order 2190 of gfz potsdam and grgs toulouse. tech rep 2014. GFZ Data Services.Search in Google Scholar
65. Pahlevi, A, Pangastuti, D. Indonesian geospatial reference system 2013 and its implementation on positioning. In: Engaging the Challenges, Enhancing the Relevance: The XXV FIG Congress 2014, 16-21 June 2014. Malaysia: Kuala Lumpur; 2014:1–12 pp.Search in Google Scholar
66. Featherstone, W, Dentith, M, Kirby, J. Strategies for the accurate determination of orthometric heights from gps. Surv Rev 1998b;34:278–96. https://doi.org/10.1179/sre.1998.34.267.278.Search in Google Scholar
67. Varga, M, Pitoňák, M, Novák, P, Bašić, T. Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA. J Geod 2021;95:53. https://doi.org/10.1007/s00190-021-01494-9.Search in Google Scholar
68. Forsberg, R. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling (No. OSU/DGSS-355). Ohio State Univ Columbus Dept of Geodetic Science and Surveying; 1984.10.21236/ADA150788Search in Google Scholar
69. Jekeli, C, Yang, HJ, Kwon, JH. Geoid determination in South Korea from a combination of terrestrial and airborne gravity anomaly data. J Korean Soc Surveying Geodesy Photogrammetry Cartogr 2013;31:567–76. https://doi.org/10.7848/ksgpc.2013.31.6-2.567.Search in Google Scholar
70. Zaki, A, Younes, E, Ghrabawy, OE, Azab, IH, Rabah, M. Accuracy assessment of available airborne gravity data in the central western desert of Egypt. J Appl Geodesy 2022b;16:373–84.10.1515/jag-2021-0066Search in Google Scholar
71. Tziavos, I, Andritsanos, V, Forsberg, R, Olesen, A. Numerical investigation of downward continuation methods for airborne gravity data. Gravity, Geoid Space Missions 2005;129:119–24. https://doi.org/10.1007/3-540-26932-0_21.Search in Google Scholar
72. Bramanto, B, Breili, K, Gerlach, C, Gumilar, I, Ophaug, V, Wahyudi, EJ. Geodetic/gravimetric evidence for mass loss in the subsidence area of bandung, Indonesia. J Geodyn 2023;157:101987–9. https://doi.org/10.1016/j.jog.2023.101987.Search in Google Scholar
73. Arfaoui, M, Inoubli, MH. Advantages of using the kriging interpolator to estimate the gravity surface, comparison and spatial variability of gravity data in the el kef-ouargha region (northern Tunisia). Arab J Geosci 2013;6:3139–47. https://doi.org/10.1007/s12517-012-0549-y.Search in Google Scholar
74. Krarup, T. A contribution to the mathematical foundation of physical geodesy, publication no. 44. Tech Rep. Danish Geodetic Institute 1969.Search in Google Scholar
75. Moritz, H. Advanced least-squares methods, report of the department of geodetic science, vol. 175. Tech Rep. Ohio State University 1972.Search in Google Scholar
76. Hirvonen, R A. On the statistical analysis of gravity anomalies. In: AD. Columbus, Ohio, USA: Ohio State University Research Foundation; 1962, 275.Search in Google Scholar
77. Gerlach, C, Ophaug, V, Omang, OCD, Idžanović, M. Quality and distribution of terrestrial gravity data for precise regional geoid modeling: a generalized setup. IX Hotine-Marussi Symposium Math Geod 2019:209–15. https://doi.org/10.1007/1345_2019_71.Search in Google Scholar
78. Abdalla, A, Green, C. Utilisation of fast fourier transform and least-squares modification of Stokes formula to compile a gravimetric geoid model over khartoum state: Sudan. Arab J Geosci 2016;9:236–3. https://doi.org/10.1007/s12517-015-2117-8.Search in Google Scholar
79. Forsberg, R, Sideris, MG. Geoid computations by the multi-band spherical FFT approach. Manuscr Geod 1993;18:82–90. https://doi.org/10.1007/bf03655302.Search in Google Scholar
80. Haagmans, R, de Min, E, van Gelderen, M. Fast evaluation of convolution integrals on the sphere using 1D-FFT, and a comparison with existing methods for Stokes’ integral. Manuscripta Geod 1993;18:82–90. https://doi.org/10.1007/bf03655302.Search in Google Scholar
81. Sjöberg, LE. On the geoid and orthometric height vs. quasigeoid and normal height. J Geod Sci 2018;8:115–20. https://doi.org/10.1515/jogs-2018-0011.Search in Google Scholar
82. Zhang, P, Bao, L, Guo, D, Li, Q. Estimation of the height datum geopotential value of Hong K ong using the combined global geopotential models and gnss/levelling data. Surv Rev 2022;383:106–16. https://doi.org/10.1080/00396265.2021.1884794.Search in Google Scholar
83. Kotsakis, C, Katsambalos, K, Ampatzidis, D. Estimation of the zero-height geopotential level wl0vd in a local vertical datum from inversion of co-located gps, leveling and geoid heights: a case study in the hellenic islands. J Geod 2012;86:423–39. https://doi.org/10.1007/s00190-011-0530-7.Search in Google Scholar
84. Grigoriadis, VN, Kotsakis, C, TIN, VGS. Estimation of the geopotential value wo for the local vertical datum of continental Greece using egm08 an gps/leveling data. IAG Symposia 2014;141:249–55.10.1007/978-3-319-10837-7_32Search in Google Scholar
85. Grigoriadis, VN, Lambrou, E, Vergos, GS, Tziavos, IN. Assessment of the Greek vertical datum: a case study in central Greece. Int Assoc Geodes Symp 2017;148:185–91. https://doi.org/10.1007/1345_2017_1.Search in Google Scholar
86. Tiede, C, Camacho, AG, Gerstenecker, C, Fernández, J, Suyanto, I. Modeling the density at merapi volcano area, Indonesia, via the inverse gravimetric problem. Geochem Geophys Geosyst 2005;6. https://doi.org/10.1029/2005gc000986.Search in Google Scholar
87. Vaníček, P, Kingdon, R, Santos, M. Geoid versus quasigeoid: a case of physics versus geometry. Contrib Geophys Geod 2012;42. https://doi.org/10.2478/v10126-012-0004-9.Search in Google Scholar
88. Li, X, Wang, Y. Comparisons of geoid models over Alaska computed with different Stokes’ kernel modifications. J Geod Sci 2011;1. https://doi.org/10.2478/v10156-010-0016-1.Search in Google Scholar
89. Featherstone, W. Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination. Comput Geosci 2003;29:183–93. https://doi.org/10.1016/s0098-3004(02)00074-2.Search in Google Scholar
90. Sjoberg, LE. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J Geod 2003a;77:423–32. https://doi.org/10.1007/s00190-003-0338-1.Search in Google Scholar
91. Sjoberg, L. A general model for modifying Stokes? formula and its least-squares solution. J Geod 2003b;77:459–64. https://doi.org/10.1007/s00190-003-0346-1.Search in Google Scholar
92. Jekeli, C. Modifying Stokes’ function to reduce the error of geoid undulation computations. J Geophys Res Solid Earth 1981;86:6985–90. https://doi.org/10.1029/jb086ib08p06985.Search in Google Scholar
93. Forsberg, R, Tscherning, CC. An overview manual for the GRAVSOFT: geodetic gravity field modelling programs. In: Contract report for JUPEM, 2nd ed. Copenhagen, Denmark: National Space Institute (DTU Space); 2008.Search in Google Scholar
94. Li, YC, Sideris, MG. Minimization and estimation of geoid undulation errors. Bull Geod 1994;68:201–19. https://doi.org/10.1007/bf00808101.Search in Google Scholar
95. Wiener, N. Extrapolation, interpolation, and smoothing of stationary time series with engineering applications. In: Technol Press MIT Wiley. Cambridge, Massachusetts, USA: The Technology Press of MIT; 1949.10.7551/mitpress/2946.001.0001Search in Google Scholar
96. Vanicek and Kleusberg. The Canadian geoid - Stokesian approach. Manuscr Geod 1987;12:86–98. https://doi.org/10.1007/bf03655117.Search in Google Scholar
97. Abbak, RA, Goyal, R, Ustun, A. A user-friendly software package for modelling gravimetric geoid by the classical Stokes-helmert method. Earth Sci Inform 2024;17:3811–24. https://doi.org/10.1007/s12145-024-01328-0.Search in Google Scholar
98. BIG. Product information of inageoid2020 version 2.0. Tech Rep, Badan Informasi Geospasial 2022.Search in Google Scholar
99. Pahlevi, A, Syafarianty, A, Susilo, S, Lumban-Gaol, Y, Putra, W, Triarahmadhana, B, et al.. Geoid undulation model as vertical reference in Indonesia. Sci Data 2024;11:822–7. https://doi.org/10.1038/s41597-024-03646-w.Search in Google Scholar PubMed PubMed Central
100. Borghi, A, Barzaghi, R, Al-Bayari, O, Madani, S A. Centimeter precision geoid model for jeddah region (Saudi A rabia). Remote Sens 2020;12:2066–6. https://doi.org/10.3390/rs12122066.Search in Google Scholar
101. Tapley, B, Ries, J, Bettadpur, S, Chambers, D, Cheng, M, Condi, F, et al.. Ggm02 – an improved earth gravity field model from grace. J Geoid 2005;79:467–78. https://doi.org/10.1007/s00190-005-0480-z.Search in Google Scholar
102. Hwang, C, Hsiao, Y-S. Orthometric corrections from leveling, gravity, density and elevation data: a case study in taiwan. J Geod 2003;77:279–91. https://doi.org/10.1007/s00190-003-0325-6.Search in Google Scholar
103. Saastamoinen, J. Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy 1972;15:247–51. 10.1029/GM015p0247.10.1029/GM015p0247Search in Google Scholar
104. Feng, P, Li, F, Yan, J, Zhang, F, Barriot, J-P, Assessment of the accuracy of the saastamoinen model and vmf1/vmf3 mapping functions with respect to ray-tracing from radiosonde data in the framework of gnss meteorology. Remote Sens 2020;12:3337. https://doi.org/10.3390/rs12203337.Search in Google Scholar
105. Dach, R, Lutz, S, Walser, P, Fridez, P. Bernese gnss software version 5.2. user manual. Tech Rep, Astronomical Institute, University of Bern 2015.Search in Google Scholar
106. Herring, TA, King, RW, Floyd, MA, McClusky, SC. Gamit reference manual: Gps analysis at mit. Tech Rep, Massachusetts Institute of Technology 2018.Search in Google Scholar
107. Hamidi, M, Javadi, P. The analysis of scientific and commercial softwares accuracy in gps observation processing. Open J Geol 2017;07:267–78. https://doi.org/10.4236/ojg.2017.73019.Search in Google Scholar
108. Andersen, OB, Scharroo, R. Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. Coastal Altimetry 2011:103–45. https://doi.org/10.1007/978-3-642-12796-0_5.Search in Google Scholar
109. Ray, RD, Egbert, GD, Erofeeva, SY. Tide predictions in shelf and coastal waters: Status and prospects. Coastal Altimetry 2011:191–216. https://doi.org/10.1007/978-3-642-12796-0_8.Search in Google Scholar
110. Ophaug, V, Gerlach, C. Error propagation in regional geoid computation using spherical splines, least-squares collocation, and Stokes’s formula. J Geod 2020;94:120–12. https://doi.org/10.1007/s00190-020-01443-y.Search in Google Scholar
111. Liu, Y, Zhang, Y, Pang, Q, Liu, S, Li, S, Shi, X, et al.. Gravity predictions in data-missing areas using machine learning methods. Remote Sens 2024;16:4173–11. https://doi.org/10.3390/rs16224173.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston