Home Advancing polar motion prediction with derivative information
Article
Licensed
Unlicensed Requires Authentication

Advancing polar motion prediction with derivative information

  • Maciej Michalczak ORCID logo EMAIL logo , Marcin Ligas ORCID logo , Santiago Belda , José M. Ferrándiz ORCID logo and Sadegh Modiri
Published/Copyright: August 22, 2024
Become an author with De Gruyter Brill

Abstract

Earth Orientation Parameters (EOP) are essential for monitoring Earth’s rotational irregularities, impacting satellite navigation, space exploration, and climate forecasting. This study introduces a hybrid prediction model combining least-squares (LS) and vector autoregression (VAR) to improve Earth’s Pole Coordinates (x, y) forecast accuracy. Using daily sampled IERS EOP 20 C04 data from 2013 to 2023, we conducted 1,000 yearly random trials, performing 48 forecasts per year. Our method evaluates six data combinations, including primary variables (x, y) and their derivatives ( x ̇ , y ̇ ). Results show a systematic improvement in prediction accuracy, especially for ultra-short-term forecasts (10 days into future), with derivative information stabilizing the solutions. The best-performing combination ( x , y , x ̇ , y ̇ ) achieved a mean absolute prediction error (MAPE) reduction (with respect to the reference data combination – x, y) of up to 8 % for the y and 7 % for the x over a whole 30-day forecast horizon. These findings highlight the effectiveness of incorporating derivatives of polar motion time series into prediction procedure.


Corresponding author: Maciej Michalczak, Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Krakow, Krakow, Poland, E-mail: 

Funding source: Generalitat Valenciana

Award Identifier / Grant number: PROMETEO/2021/030

Award Identifier / Grant number: SEJIGENT/2021/001

Award Identifier / Grant number: MCIN/AEI/10.13039/501100011033

Funding source: “Excellence initiative – research university” for the AGH University of Krakow

Award Identifier / Grant number: 6360

Funding source: The European Union-NextGenerationEU

Award Identifier / Grant number: ZAMBRANO 21-04

Funding source: Statutory research grant at the Department of Integrated Geodesy and Cartography, AGH University of Krakow

Award Identifier / Grant number: 16.16.150.545

Acknowledgments

We gratefully acknowledge Poland’s high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2022/015968.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. ML proposed the general idea and methodology of this contribution, did the computations and wrote the draft version. MM proposed the general idea, wrote the draft version and prepared figures. SB, JMF, SM proposed the general idea, commented regularly on the results and gave suggestions.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Research project partly supported by program “Excellence initiative – research university” for the AGH University of Krakow and it is also a result of research on geospatial methods carried out within the statutory research grant no. 16.16.150.545 at the Department of Integrated Geodesy and Cartography, AGH University of Krakow. Santiago Belda and Jose M. Ferrándiz research was partially supported by Generalitat Valenciana (PROMETEO/2021/030, SEJIGENT/2021/001), the European Union-NextGenerationEU (ZAMBRANO 21-04) and by the Project PID2020-119383GB-I00 funded by Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033/).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Barnes, R, Hide, R, White, A, Wilson, C. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc Roy Soc Lond A Math Phys Sci 1983;387:31–73.10.1098/rspa.1983.0050Search in Google Scholar

2. Seitz, F, Schuh, H. Earth rotation. Sciences of geodesy-I: advances and future directions. Heidelberg: Springer; 2010:185–227 pp.10.1007/978-3-642-11741-1_6Search in Google Scholar

3. Fodor, C, Heinkelmann, R, Schuh, H, Varga, P. On the mutual interrelation between earth rotation and earthquake activity. In: Proceedings, journees 2019 “astrometry, earth rotation and reference systems in the Gaia era”. Paris, France; 2019:85–90 pp.Search in Google Scholar

4. Ferrándiz, JM, Modiri, S, Belda, S, Barkin, M, Bloßfeld, M, Heinkelmann, R, et al.. Drift of the earth’s principal axes of inertia from GRACE and satellite laser ranging data. Rem Sens 2020;12:314. https://doi.org/10.3390/rs12020314.Search in Google Scholar PubMed PubMed Central

5. Modiri, S. On the improvement of earth orientation parameters estimation: using modern space geodetic techniques. Germany: Technische Universitaet Berlin; 2021.Search in Google Scholar

6. Modiri, S, Heinkelmann, R, Belda, S, Malkin, Z, Hoseini, M, Korte, M, et al.. Towards understanding the interconnection between celestial pole motion and earth’s magnetic field using space geodetic techniques. Sensors 2021;21:7555. https://doi.org/10.3390/s21227555.Search in Google Scholar PubMed PubMed Central

7. Michalczak, M, Ligas, M. Kriging-based prediction of the earth’s pole coordinates. J Appl Geodesy 2021;15:233–41. https://doi.org/10.1515/jag-2021-0007.Search in Google Scholar

8. Raut, S, Modiri, S, Heinkelmann, R, Balidakis, K, Belda, S, Kitpracha, C, et al.. Investigating the relationship between length of day and el-nino using wavelet coherence method. In: International association of geodesy symposia; 2022, vol 154:253–8 pp.10.1007/1345_2022_167Search in Google Scholar

9. Malkin, Z, Belda, S, Modiri, S. Detection of a new large free core nutation phase jump. Sensors 2022;22:5960. https://doi.org/10.3390/s22165960.Search in Google Scholar PubMed PubMed Central

10. Kiani Shahvandi, M, Dill, R, Dobslaw, H, Kehm, A, Bloßfeld, M, Schartner, M, et al.. Geophysically-informed machine learning for improving rapid estimation and short-term prediction of Earth orientation parameters. J Geophys Res Solid Earth 2023;128:e2023JB026720. https://doi.org/10.1029/2023jb026720.Search in Google Scholar

11. Modiri, S, Belda, S, Heinkelmann, R, Hoseini, M, Ferrándiz, JM, Schuh, H. Polar motion prediction using the combination of SSA and copula-based analysis. Earth Planets Space 2018;70:1–18. https://doi.org/10.1186/s40623-018-0888-3.Search in Google Scholar PubMed PubMed Central

12. Dobslaw, H, Dill, R. Predicting earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Adv Space Res 2018;61:1047–54. https://doi.org/10.1016/j.asr.2017.11.044.Search in Google Scholar

13. Kalarus, M, Schuh, H, Kosek, W, Akyilmaz, O, Bizouard, C, Gambis, D, et al.. Achievements of the earth orientation parameters prediction comparison campaign. J Geodesy 2010;84:587–96. https://doi.org/10.1007/s00190-010-0387-1.Search in Google Scholar

14. Śliwińska, J, Kur, T, Wińska, M, Nastula, J, Dobslaw, H, Partyka, A. Second earth orientation parameters prediction comparison campaign (2nd EOP PCC): overview. Artif Satell 2022;57:237–53. https://doi.org/10.2478/arsa-2022-0021.Search in Google Scholar

15. Kur, T, Dobslaw, H, Śliwińska, J, Nastula, J, Wińska, M, Partyka, A. Evaluation of selected short-term predictions of UT1-UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth Planets Space 2022;74:1–9. https://doi.org/10.1186/s40623-022-01753-9.Search in Google Scholar

16. Kiani Shahvandi, M, Schartner, M, Soja, B. Neural ODE differential learning and its application in polar motion prediction. J Geophys Res Solid Earth 2022;127:e2022JB024775. https://doi.org/10.1029/2022jb024775.Search in Google Scholar

17. Ligas, M, Michalczak, M. Dynamic mode decomposition and bivariate autoregressive short-term prediction of earth rotation parameters. J Appl Geodesy 2024;18:211–21. https://doi.org/10.1515/jag-2023-0030.Search in Google Scholar

18. Modiri, S, Belda, S, Hoseini, M, Heinkelmann, R, Ferrándiz, JM, Schuh, H. A new hybrid method to improve the ultra-short-term prediction of LOD. J Geodesy 2020;94:1–14. https://doi.org/10.1007/s00190-020-01354-y.Search in Google Scholar PubMed PubMed Central

19. Kiani Shahvandi, M, Soja, B. Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of earth orientation parameters and GNSS station coordinate time series. Adv Space Res 2022;70:563–75. https://doi.org/10.1016/j.asr.2022.05.042.Search in Google Scholar

20. Guessoum, S, Belda, S, Ferrandiz, JM, Modiri, S, Raut, S, Dhar, S, et al.. The short-term prediction of length of day using 1D convolutional neural networks (1D CNN). Sensors 2022;22:9517. https://doi.org/10.3390/s22239517.Search in Google Scholar PubMed PubMed Central

21. Gou, J, Kiani Shahvandi, M, Hohensinn, R, Soja, B. Ultra-short-term prediction of LOD using LSTM neural networks. J Geodesy 2023;97:52. https://doi.org/10.1007/s00190-023-01745-x.Search in Google Scholar

22. Wang, L, Miao, W. Medium-long term forecasting method for earth rotation parameters considering effective angular momentum information. Geomatics Inf Sci Wuhan Univ 2022;1–16.Search in Google Scholar

Received: 2024-05-28
Accepted: 2024-07-31
Published Online: 2024-08-22
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jag-2024-0046/html
Scroll to top button