Abstract
In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X (
Award Identifier / Grant number: 0852-2020-0015
Funding statement: The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, № 0852-2020-0015).
Acknowledgment
The authors would like to thank the CSIR-National Physical laboratory and National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Goa, India for providing the data and all required logistic support to conduct the experiments.
References
[1] S. K. Panda, H. Haralambous, M. Moses, J. R. K. K. Dabbakuti, and Y. A. Tariku, “Ionospheric and plasmaspheric electron contents from space-time collocated digisonde, COSMIC, and GPS observations and model assessments,” Acta Astronaut., vol. 179, pp. 619–635, Feb. 2021.10.1016/j.actaastro.2020.12.005Search in Google Scholar
[2] A. Elsayed, A. Sedeek, M. Doma, and M. Rabah, “Vertical ionospheric delay estimation for single-receiver operation,” J. Appl. Geod., vol. 13, no. 2, pp. 81–91, 2019.10.1515/jag-2018-0041Search in Google Scholar
[3] P. Jamjareegulgarn, “Assessment of bottomside thickness parameters over magnetic equator and low latitudes during high solar activity of solar cycle 24,” Acta Astronaut., vol. 177, pp. 182–191, Dec. 2020.10.1016/j.actaastro.2020.07.030Search in Google Scholar
[4] R. Jenan, T. L. Dammalage, and S. K. Panda, “Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region,” Acta Astronaut., vol. 180, pp. 575–587, Mar. 2021.10.1016/j.actaastro.2021.01.006Search in Google Scholar
[5] S. K. Panda and S. S. Gedam, “Evaluation of GPS standard point positioning with various ionospheric error mitigation techniques,” J. Appl. Geod., vol. 10, no. 4, pp. 211–221, 2016.10.1515/jag-2016-0019Search in Google Scholar
[6] A. Hundhausen, “Coronal mass ejections,” in: The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, K. T. Strong, J. L. R. Saba, B. M. Haisch, and J. T. Schmelz, eds. Springer New York, New York, NY, 1999, pp. 143–200.10.1007/978-1-4612-1442-7_5Search in Google Scholar
[7] Y. I. Feldshteyn, “Some problems concerning the morphology of auroras and magnetic disturbances at high latitudes,” Geomagn. Aeron., vol. 3, 1963.Search in Google Scholar
[8] A. S. Rodger and J. Aarons, “Studies of ionospheric F-region irregularities from geomagnetic mid-latitude conjugate regions,” J. Atmospheric Terr. Phys., vol. 50, no. 1, pp. 63–72, Jan. 1988.10.1016/0021-9169(88)90010-4Search in Google Scholar
[9] M. B. El-Arini, J. Secan, J. A. Klobuchar, P. H. Doherty, G. Bishop, and K. Groves, “Ionospheric effects on GPS signals in the Arctic region using early GPS data from Thule, Greenland,” Radio Sci., vol. 44, no. 01, pp. 1–14, Feb. 2009.10.1029/2008RS004031Search in Google Scholar
[10] S. A. Bahari, M. Abdullah, and B. Yatim, “Variations of ionospheric TEC at geomagnetic conjugate points during solar minimum,” in: 2009 International Conference on Space Science and Communication, pp. 157–160, Oct. 2009.10.1109/ICONSPACE.2009.5352647Search in Google Scholar
[11] P. Prikryl, P. T. Jayachandran, S. C. Mushini, D. Pokhotelov, J. W. MacDougall, E. Donovan, E. Spanswick, and J.-P. St.-Maurice, “GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum,” Ann. Geophys., vol. 28, no. 6, pp. 1307–1316, Jun. 2010.10.5194/angeo-28-1307-2010Search in Google Scholar
[12] P. Bhawre, A. Gwal, A. A. Mansoori, and P. A. Khan, “Study of GPS derived total electron content and scintillation index variations over Indian Arctic and Antarctic stations,” J. Sci. Res., vol. 5, no. 2, pp. 255–264, 2013.10.3329/jsr.v5i2.12724Search in Google Scholar
[13] R. Jin, S. Jin, and X. Tao, “Ionospheric anomalies during the March 2013 geomagnetic storm from BeiDou Navigation Satellite System (BDS) observations,” in: China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I, pp. 97–104, 2014.10.1007/978-3-642-54737-9_10Search in Google Scholar
[14] L. Liu, H. Huang, Y. Chen, H. Le, B. Ning, W. Wan, and H. Zhang, “Deriving the effective scale height in the topside ionosphere based on ionosonde and satellite in situ observations,” J. Geophys. Res. Space Phys., vol. 119, no. 10, pp. 8472–8482, 2014.10.1002/2014JA020505Search in Google Scholar
[15] P. Khatarkar, V. Kachneria, S. Bhardwad, P. Bhawre, R. Yadav, S. Raghuwanshi, G. Panda, V. Patil, B. M. P. Purohit, and A. K. Gwal, “Moderate magnetically disturbed events of August 2010 on high latitude station,” 2014.10.9790/0990-0258286Search in Google Scholar
[16] J. Guo, W. Li, X. Liu, Q. Kong, C. Zhao, and B. Guo, “Temporal-spatial variation of global GPS-derived total electron content, 1999–2013,” PLOS ONE, vol. 10, no. 7, e0133378, Jul. 2015.10.1371/journal.pone.0133378Search in Google Scholar PubMed PubMed Central
[17] C. Watson, P. T. Jayachandran, and J. W. MacDougall, “Characteristics of GPS TEC variations in the polar cap ionosphere,” J. Geophys. Res. Space Phys., vol. 121, no. 5, pp. 4748–4768, May 2016.10.1002/2015JA022275Search in Google Scholar
[18] O. I. Yakovlev, J. Wickert, A. G. Pavelyev, G. P. Cherkunova, and V. A. Anufriev, “Results of radio occultation measurement of polar ionosphere at satellite-to-satellite paths during strong flare solar activity,” Acta Astronaut., vol. 67, no. 3, pp. 315–323, Aug. 2010.10.1016/j.actaastro.2010.02.017Search in Google Scholar
[19] K. Ansari, K.-D. Park, and S. K. Panda, “Empirical Orthogonal Function analysis and modeling of ionospheric TEC over South Korean region,” Acta Astronaut., vol. 161, pp. 313–324, Aug. 2019.10.1016/j.actaastro.2019.05.044Search in Google Scholar
[20] K. Ansari, S. K. Panda, and P. Jamjareegulgarn, “Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period,” Acta Astronaut., vol. 169, pp. 216–223, Apr. 2020.10.1016/j.actaastro.2020.01.014Search in Google Scholar
[21] A. Seif, M. Abdullah, A. Marie Hasbi, and Y. Zou, “Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity,” Acta Astronaut., vol. 81, no. 1, pp. 92–101, Dec. 2012.10.1016/j.actaastro.2012.06.024Search in Google Scholar
[22] N. Mittal and V. K. Verma, “On geomagnetic storms and associated solar activity phenomena observed during 1996–2009,” Acta Astronaut., vol. 121, pp. 179–199, Apr. 2016.10.1016/j.actaastro.2015.12.038Search in Google Scholar
[23] K. D. Reddybattula and S. K. Panda, “Performance analysis of quiet and disturbed time ionospheric TEC responses from GPS-based observations, IGS-GIM, IRI-2016 and SPIM/IRI-Plas 2017 models over the low latitude Indian region,” Var. Coupling Equat. Low-Latit. Mesos. Thermosphere Ionos. Latest Dev. Monit. Model. Tech., vol. 64, no. 10, pp. 2026–2045, Nov. 2019.10.1016/j.asr.2019.03.034Search in Google Scholar
[24] I. L. Mallika, D. Venkata Ratnam, S. Raman, and G. Sivavaraprasad, “Machine learning algorithm to forecast ionospheric time delays using Global Navigation satellite system observations,” Acta Astronaut., vol. 173, pp. 221–231, Aug. 2020.10.1016/j.actaastro.2020.04.048Search in Google Scholar
[25] S. K. Sharma, A. K. Singh, S. K. Panda, and K. Ansari, “GPS derived ionospheric TEC variability with different solar indices over Saudi Arab region,” Acta Astronaut., vol. 174, pp. 320–333, Sep. 2020.10.1016/j.actaastro.2020.05.024Search in Google Scholar
[26] V. N. Shubin and T. L. Gulyaeva, “Solar forcing on the ionosphere: Global model of the F2 layer peak parameters driven by re-calibrated sunspot numbers,” Acta Astronaut., vol. 179, pp. 197–208, Feb. 2021.10.1016/j.actaastro.2020.10.029Search in Google Scholar
[27] M. Ulukavak and S. Inyurt, “Seismo-ionospheric precursors of strong sequential earthquakes in Nepal region,” Acta Astronaut., vol. 166, pp. 123–130, Jan. 2020.10.1016/j.actaastro.2019.09.033Search in Google Scholar
[28] J. R. K. K. Dabbakuti, R. Peesapati, S. K. Panda, and S. Thummala, “Modeling and analysis of ionospheric TEC variability from GPS–TEC measurements using SSA model during 24th solar cycle,” Acta Astronaut., vol. 178, pp. 24–35, Jan. 2021.10.1016/j.actaastro.2020.08.034Search in Google Scholar
[29] M. Abdelazeem, R. N. Çelik, and A. El-Rabbany, “An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations,” J. Appl. Geod., vol. 12, no. 1, pp. 65–76, 2018.10.1515/jag-2017-0023Search in Google Scholar
[30] P. O. Amaechi, E. O. Oyeyemi, A. O. Akala, H. E. Messanga, S. K. Panda, G. K. Seemala, J. O. Oyedokun, R. Fleury, and C. Amory-Mazaudier, “Ground-based GNSS and C/NOFS observations of ionospheric irregularities over Africa: A case study of the 2013 St. Patrick’s day geomagnetic storm,” Space Weather, vol. 19, no. 2, e2020SW002631, Feb. 2021.10.1029/2020SW002631Search in Google Scholar
[31] S. A. Fuselier, H. U. Frey, K. J. Trattner, S. B. Mende, and J. L. Burch, “Cusp aurora dependence on interplanetary magnetic field
[32] K. Sahithi, M. Sridhar, S. K. Kotamraju, K. C. S. Kavya, G. Sivavaraprasad, D. V. Ratnam, and C. Deepthi, “Characteristics of ionospheric scintillation climatology over Indian low-latitude region during the 24th solar maximum period,” Geod. Geodyn., vol. 10, no. 2, pp. 110–117, 2019.10.1016/j.geog.2018.11.006Search in Google Scholar
[33] L. B. N. Clausen, J. I. Moen, K. Hosokawa, and J. M. Holmes, “GPS scintillations in the high latitudes during periods of dayside and nightside reconnection,” J. Geophys. Res. Space Phys., vol. 121, no. 4, pp. 3293–3309, Apr. 2016.10.1002/2015JA022199Search in Google Scholar
[34] B. S. Tate and E. A. Essex, “Investigation of irregularities in the southern high latitude ionosphere,” Adv. Space Res., vol. 27, no. 8, pp. 1385–1389, Jan. 2001.10.1016/S0273-1177(01)00035-7Search in Google Scholar
[35] A. Coster, S. Skone, C. Mitchell, G. De Franceschi, L. Alfonso, and V. Romano, “Global studies of GPS scintillation,” in: Proceedings of the 2005 National Technical Meeting of the Institute of Navigation, pp. 1130–1139, 2005.Search in Google Scholar
[36] G. Sivavaraprasad and D. Venkata Ratnam, “Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station,” Adv. Space Res., vol. 60, no. 2, pp. 475–490, 2017.10.1016/j.asr.2017.01.031Search in Google Scholar
[37] N. Jakowski, H. D. Bettac, B. Lazo, and L. Lois, “Seasonal variations of the columnar electron content of the ionosphere observed in Havana from July 1974 to April 1975,” J. Atmospheric Terr. Phys., vol. 43, no. 1, pp. 7–11, Jan. 1981.10.1016/0021-9169(81)90003-9Search in Google Scholar
[38] T. Tsugawa, K. Shiokawa, T. Ogawa, Y. Otsuka, A. Saito, and M. Nishioka, “Interhemispheric conjugacy of large-scale traveling ionospheric disturbances,” AGU Fall Meeting Abstracts, vol. 2004, SA21B-0347, 2004.Search in Google Scholar
[39] M. L. Parkinson, M. Pinnock, J. A. Wild, M. Lester, T. K. Yeoman, S. E. Milan, H. Ye, J. C. Devlin, H. U. Frey, and T. Kikuchi, “Interhemispheric asymmetries in the occurrence of magnetically conjugate sub-auroral polarisation streams,” Ann Geophys, vol. 23, no. 4, pp. 1371–1390, Jun. 2005.10.5194/angeo-23-1371-2005Search in Google Scholar
[40] A. K. Singh, S. Saini, and R. M. Das, “Impact of geomagnetic variation over sub-auroral ionospheric region during high solar activity year 2014,” Adv. Space Res., vol. 63, no. 10, pp. 3189–3199, May 2019.10.1016/j.asr.2019.01.050Search in Google Scholar
[41] D. N. Baker, “Solar wind-magnetosphere drivers of space weather,” in: Invit. Rev. Artic. 1995 CEDAR Workshop, vol. 58, no. 14, pp. 1509–1526, Oct. 1996.10.1016/0021-9169(96)00006-2Search in Google Scholar
[42] V. A. Sergeev, R. J. Pellinen, and T. I. Pulkkinen, “Steady magnetospheric convection: A review of recent results,” Space Sci. Rev., vol. 75, no. 3, pp. 551–604, Feb. 1996.10.1007/BF00833344Search in Google Scholar
[43] T. I. Pulkkinen, M. Palmroth, and R. L. McPherron, “What drives magnetospheric activity under northward IMF conditions?,” Geophys. Res. Lett., vol. 34, no. 18, Sep. 2007.10.1029/2007GL030619Search in Google Scholar
[44] S. Basu, E. J. Weber, T. W. Bullett, M. J. Keskinen, E. MacKenzie, P. Doherty, R. Sheehan, H. Kuenzler, P. Ning, and J. Bongiolatti, “Characteristics of plasma structuring in the cusp/cleft region at Svalbard,” Radio Sci., vol. 33, no. 6, pp. 1885–1899, Dec. 1998.10.1029/98RS01597Search in Google Scholar
[45] J. L. Weber, “Implementation of land and ecosystem accounts at the European Environment Agency,” Ecol. Econ., vol. 61, p. 695, 2007.10.1016/j.ecolecon.2006.05.023Search in Google Scholar
[46] M. A. Momani, M. A. Mohd Ali, B. Yatim, M. Abdullah, and N. Misran, “GPS observations at quasi-conjugate points under disturbed conditions,” Acta Geophys., vol. 56, no. 4, pp. 1179–1201, Dec. 2008.10.2478/s11600-008-0048-4Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Analysis of a kinematic real-time robotic total station network for robot control
- Research Articles
- Deformation analysis of a reference wall towards the uncertainty investigation of terrestrial laser scanners
- Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors
- Temperature and humidity effects on CG-6 gravity observations
- Kriging-based prediction of the Earth’s pole coordinates
- Adjustment models for multivariate geodetic time series with vector-autoregressive errors
- Comparison of polar ionospheric behavior at Arctic and Antarctic regions for improved satellite-based positioning
Articles in the same Issue
- Frontmatter
- Review
- Analysis of a kinematic real-time robotic total station network for robot control
- Research Articles
- Deformation analysis of a reference wall towards the uncertainty investigation of terrestrial laser scanners
- Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors
- Temperature and humidity effects on CG-6 gravity observations
- Kriging-based prediction of the Earth’s pole coordinates
- Adjustment models for multivariate geodetic time series with vector-autoregressive errors
- Comparison of polar ionospheric behavior at Arctic and Antarctic regions for improved satellite-based positioning