Abstract
Great earthquakes (≥M8.0) often cause widespread postseismic decay in areas well beyond any recognised plate boundaries. The Mw8.6 and 8.2 northern Sumatra doublet earthquakes occurred on 11 April 2012, near the intersection of the Indian, Australian and Sundaland plate, have caused an extensive coseismic offset and postseismic decay over the region. In this study, the long-term GPS time-series (1999–2014) suggests that the postseismic decay associated with the doublet earthquakes have had a significant effect on the eastern boundary of the Sundaland plate up to the western region of Peninsular Malaysia. Before the 2004 Mw9.1 Aceh and 2005 Mw8.6 Nias earthquakes, the average velocity of continuous GPS sites in Peninsular Malaysia is moving southeastward at
Funding statement: This work is financially supported by the University of Otago Doctoral Scholarship.
Acknowledgment
The authors would like to thank International GNSS Services (IGS), Center for Orbit Determination in Europe (CODE), Badan Informasi Geospasial (BIG), Indonesian Institute of Science (LIPI), National Mapping and Resource Information Authority (NAMRIA), Scripps Orbit and Permanent Array Centre (SOPAC), California Institute of Technology (Caltech) and Earth Observatory of Singapore (EOS) for maintaining and making the valuable GNSS data and processing parameters available. Special thanks to Department of Surveying & Mapping Malaysia (DSSM) for providing permanent GPS data from Malaysia under the copyright license No. JUPEM.BPK.18/4/16.10 (151) and JUPEM.BP.07.01.14 (63). This paper also benefited from a review by Sigrun Hreinsdóttir. Figures were generated using Generic Mapping Tools (GMT) software [21].
References
[1] Altamimi, Z., Métivier, L., Collilieux, X., ITRF2008 plate motion model. J. Geophys. Res. Solid Earth 117(B7) (2012), B07402, doi:10.1029/2011JB008930.Search in Google Scholar
[2] Argus, D. F., Gordon, R. G., DeMets, C., Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst. 12(11) (2011), Q11001, doi:10.1029/2011GC003751.Search in Google Scholar
[3] Bird, P., An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4(3) (2003), 1027, doi:10.1029/2001GC000252.Search in Google Scholar
[4] Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., McCaffrey, R., Subarya, C., Puntodewo, S. S. O., Calais, E., Crustal motion in Indonesia from Global Positioning System measurements. J. Geophys. Res. Solid Earth 108(B8) (2003), 2367, doi:10.1029/2001JB000324.Search in Google Scholar
[5] Boehm, J., Werl, B., Schuh, H., Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data. J. Geophys. Res. Solid Earth 111 (2006), B02406, doi:10.1029/2005JB003629.Search in Google Scholar
[6] Dach, R., Lutz, S., Walser, P., Fridez, P. (Eds), Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern (2015), doi:10.7892/boris.72297.Search in Google Scholar
[7] DeMets, C., Gordon, R. G., Argus, D. F., Geologically current plate motions. Geophys. J. Int. 181(1) (2010), 1–80, doi:10.1111/j.1365-246X.2009.04491.x.Search in Google Scholar
[8] Duputel, Z., Kanamori, H., Tsai, V. C., Rivera, L., Meng, L., Ampuero, J.-P., Stock, J. M., The 2012 Sumatra great earthquake sequence. Earth. Planet. Sci. Lett. 351–352(0) (2012), 247–257, doi:10.1016/j.epsl.2012.07.017.Search in Google Scholar
[9] Feng, L., Hill, E. M., Banerjee, P., Hermawan, I., Tsang, L. L. H., Natawidjaja, D. H., Suwargadi, B. W., Sieh, K., A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. J. Geophys. Res. Solid Earth 120 (2015), 3566–3598. doi:10.1002/2014JB011661.Search in Google Scholar
[10] Goudarzi, M. A., Cocard, M., Santerre, R., EPC: Matlab software to estimate Euler pole parameters. GPS Solut. 18(1) (2014), 153–162, doi:10.1007/s10291-013-0354-4.Search in Google Scholar
[11] Gumilar, I., Abidin, H. Z., Hutasoit, L. M., Hakim, D. M., Sidiq, T. P., Andreas, H., Land Subsidence in Bandung Basin and its Possible Caused Factors. Procedia Earth and Planetary Science, 12 (2015), 47–62. doi:10.1016/j.proeps.2015.03.026.Search in Google Scholar
[12] Kreemer, C., Holt, W. E., Haines, A. J., An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 154(1) (2003), 8–34, doi:10.1046/j.1365-246X.2003.01917.x.Search in Google Scholar
[13] Kreemer, C., Blewitt, G., Klein, E. C., A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 15(10) (2014), 3849–3889, doi:10.1002/2014GC005407.Search in Google Scholar
[14] McCaffrey, R., The Tectonic Framework of the Sumatran Subduction Zone. Ann. Rev. Earth Planet. Sci. 37(1) (2009), 345–366. doi:10.1146/annurev.earth.031208.100212.Search in Google Scholar
[15] Musa, T. A., Amir, S., Othman, R., Ses, S., Omar, K., Abdullah, K., Lim, S., Rizos, C., GPS meteorology in a low-latitude region: Remote sensing of atmospheric water vapor over the Malaysian Peninsula. J. Atmos. Sol. Terr. Phys. 73(16) (2011), 2410–2422, doi:10.1016/j.jastp.2011.08.014.Search in Google Scholar
[16] Prawirodirdjo, L., Bock, Y., Instantaneous global plate motion model from 12 years of continuous GPS observations. J. Geophys. Res. Solid Earth 109(B8) (2004), B08405, doi:10.1029/2003JB002944.Search in Google Scholar
[17] Scherneck, H.-G., A parametrized solid Earth tide mode and ocean loading effects for global geodetic base-line measurements. Geophys. J. Int. 106(3) (1991), 677–694, doi:10.1111/j.1365-246X.1991.tb06339.x.Search in Google Scholar
[18] Sella, G. F., Dixon, T. H., Mao, A., REVEL: A model for Recent plate velocities from space geodesy. J. Geophys. Res. Solid Earth 107(B4) (2002), ETG 11-1–ETG 11-30, doi:10.1029/2000JB000033.Search in Google Scholar
[19] Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Haji Abu S., Promthong C., Subarya C., Sarsito D. A., Matheussen S., Morgan P., Spakman W., A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. J. Geophys. Res. Solid Earth 112(B6) (2007), B06420, doi:10.1029/2005JB003868.Search in Google Scholar
[20] Socquet, A., Vigny, C., Chamot-Rooke, N., Simons, W., Rangin, C., Ambrosius, B., India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J. Geophys. Res. Solid Earth 111(B5) (2006), B05406. doi:10.1029/2005JB003877.Search in Google Scholar
[21] Wessel, P., Smith, W. H., New, improved version of Generic Mapping Tools released. Eos, Trans. Am. Geophys. Union 79(47) (1998), 579, doi:10.1029/98EO00426.Search in Google Scholar
[22] Yu, S.-B., Hsu, Y.-J., Bacolcol, T., Yang, C.-C., Tsai, Y.-C., Solidum, R., Present-day crustal deformation along the Philippine Fault in Luzon, Philippines. J. Asian Earth Sci. 65 (2013), 64–74, doi:10.1016/j.jseaes.2010.12.007.Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- On the determination of transformation parameters between different ITRS realizations using Procrustes approach in Turkey
- Object tracking with robotic total stations: Current technologies and improvements based on image data
- Impact of spatial correlations on the surface estimation based on terrestrial laser scanning
- Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software
- Papers presented at the FIG Working Week 2016
- Editorial
- Present-day kinematics of the Sundaland plate
- Options for developing modernized geodetic datum for Nepal following the April 25, 2015 Mw7.8 Gorkha earthquake
- An investigation into the performance of real-time GPS+GLONASS Precise Point Positioning (PPP) in New Zealand
- Wi-Fi location fingerprinting using an intelligent checkpoint sequence
Articles in the same Issue
- Frontmatter
- Research Articles
- On the determination of transformation parameters between different ITRS realizations using Procrustes approach in Turkey
- Object tracking with robotic total stations: Current technologies and improvements based on image data
- Impact of spatial correlations on the surface estimation based on terrestrial laser scanning
- Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software
- Papers presented at the FIG Working Week 2016
- Editorial
- Present-day kinematics of the Sundaland plate
- Options for developing modernized geodetic datum for Nepal following the April 25, 2015 Mw7.8 Gorkha earthquake
- An investigation into the performance of real-time GPS+GLONASS Precise Point Positioning (PPP) in New Zealand
- Wi-Fi location fingerprinting using an intelligent checkpoint sequence