Abstract.
Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.
© 2012 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Editorial: Special Issue on Deformation Monitoring
- Model selection for system identification by means of artificial neural networks
- Adjustment of highly non-linear redundant systems of equations using a numerical, topology-based approach
- Optimized Kalman filter versus rigorous method in deformation analysis
- The application of the model of coordinate S-transformation for stability analysis of datum points in high-precision GPS deformation monitoring networks
- Velocity estimation of GPS base stations considering the coloured noises
- Spectral analysis of structural deformation – A case study
- Ambient vibration monitoring of slender structures by microwave interferometer remote sensing
- A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations
- On the detection of systematic errors in terrestrial laser scanning data
- Point-based and plane-based deformation monitoring of indoor environments using terrestrial laser scanners
- Recurring mass movements on the Danube's bank at Dunaszekcső (Hungary) observed by geodetic methods
- Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data
- Monitoring of surface deformation in Dangxiong using PSInSAR technique
- IAG Commission 4: Mission and contributions to observing and modeling dynamic earth
Articles in the same Issue
- Masthead
- Editorial: Special Issue on Deformation Monitoring
- Model selection for system identification by means of artificial neural networks
- Adjustment of highly non-linear redundant systems of equations using a numerical, topology-based approach
- Optimized Kalman filter versus rigorous method in deformation analysis
- The application of the model of coordinate S-transformation for stability analysis of datum points in high-precision GPS deformation monitoring networks
- Velocity estimation of GPS base stations considering the coloured noises
- Spectral analysis of structural deformation – A case study
- Ambient vibration monitoring of slender structures by microwave interferometer remote sensing
- A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations
- On the detection of systematic errors in terrestrial laser scanning data
- Point-based and plane-based deformation monitoring of indoor environments using terrestrial laser scanners
- Recurring mass movements on the Danube's bank at Dunaszekcső (Hungary) observed by geodetic methods
- Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data
- Monitoring of surface deformation in Dangxiong using PSInSAR technique
- IAG Commission 4: Mission and contributions to observing and modeling dynamic earth