Home Autocontinuity, strict convergence in measure and convergence of integral sequences
Article
Licensed
Unlicensed Requires Authentication

Autocontinuity, strict convergence in measure and convergence of integral sequences

  • Do Huy Hoang , Truong Thi Nhan , Dao Van Duong and Tran Nhat Luan ORCID logo EMAIL logo
Published/Copyright: August 29, 2025

Abstract

In this paper, we give an alternative proof for the proof of Theorem 2.23 shown in the paper [J. Borzová-Molnárová, L. Halčinová and O. Hutník, The smallest semicopula-based universal integrals II: Convergence theorems, Fuzzy Sets and Systems 271 2015, 18–30] by exploiting the uniform continuity of the underlying semicopula together with using ε-techniques of limit. Thus, our proof avoids using the way interchanging the supremum and infimum which is not valid in general.

References

[1] J. Borzová-Molnárová, L. Halčinová and O. Hutník, The smallest semicopula-based universal integrals II: Convergence theorems, Fuzzy Sets and Systems 271 (2015), 18–30. 10.1016/j.fss.2014.09.024Search in Google Scholar

[2] J. Borzová-Molnárová, L. Halčinová and O. Hutník, The smallest semicopula-based universal integrals: Remarks and improvements, Fuzzy Sets and Systems 393 (2020), 29–52. 10.1016/j.fss.2019.05.010Search in Google Scholar

[3] D. H. Hoang, P. T. Son, H. Q. Duc, D. Van Duong and T. N. Luan, On a convergence in measure theorem for the seminormed and semiconormed fuzzy integrals, Fuzzy Sets and Systems 457 (2023), 156–168. 10.1016/j.fss.2022.08.008Search in Google Scholar

[4] D. H. Hoang, P. T. Son, T. T. Nhan, H. Q. Duc and D. V. Duong, On almost uniform convergence theorems for the smallest semicopula-based universal integral, Fuzzy Sets and Systems 467 (2023), Article ID 108592. 10.1016/j.fss.2023.108592Search in Google Scholar

[5] J. Li, R. Mesiar, E. Pap and E. P. Klement, Convergence theorems for monotone measures, Fuzzy Sets and Systems 281 (2015), 103–127. 10.1016/j.fss.2015.05.017Search in Google Scholar

[6] X. C. Liu, Further discussion on convergence theorems for seminormed fuzzy integrals and semiconormed fuzzy integrals, Fuzzy Sets and Systems 55 (1993), no. 2, 219–226. 10.1016/0165-0114(93)90134-4Search in Google Scholar

[7] T. N. Luan, D. H. Hoang, T. M. Thuyet, H. N. Phuoc and K. H. Dung, A note on the smallest semicopula-based universal integral and an application, Fuzzy Sets and Systems 430 (2022), 88–101. 10.1016/j.fss.2021.07.005Search in Google Scholar

[8] F. Suárez García and P. Gil Álvarez, Two families of fuzzy integrals, Fuzzy Sets and Systems 18 (1986), no. 1, 67–81. 10.1016/0165-0114(86)90028-XSearch in Google Scholar

Received: 2025-04-17
Revised: 2025-07-21
Accepted: 2025-07-27
Published Online: 2025-08-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2025-0047/html?lang=en
Scroll to top button