Home Young’s inequality for orthonormal systems
Article
Licensed
Unlicensed Requires Authentication

Young’s inequality for orthonormal systems

  • Arup Kumar Maity EMAIL logo
Published/Copyright: June 17, 2025

Abstract

We have demonstrated Young’s inequality for an orthonormal system for twisted convolution setup. As an application, we show some new Fourier multipliers.

MSC 2020: 44A35; 42B15

Acknowledgements

The author thanks IISER Mohali for supporting the research via the institute postdoctoral fellowship.

References

[1] R. J. Bagby, On L p , L q multipliers of Fourier transforms, Pacific J. Math. 68 (1977), no. 1, 1–12. 10.2140/pjm.1977.68.1Search in Google Scholar

[2] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, Pure Appl. Math. (New York), John Wiley & Sons, New York, 1984. Search in Google Scholar

[3] R. L. Frank, M. Lewin, E. H. Lieb and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 7, 1507–1526. 10.4171/jems/467Search in Google Scholar

[4] R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, Amer. J. Math. 139 (2017), no. 6, 1649–1691. 10.1353/ajm.2017.0041Search in Google Scholar

[5] S. Ghosh, S. S. Mondal and J. Swain, Strichartz inequality for orthonormal functions associated with special Hermite operator, Forum Math. 36 (2024), no. 3, 655–669. 10.1515/forum-2023-0115Search in Google Scholar

[6] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math. 249, Springer, New York, 2014. 10.1007/978-1-4939-1194-3Search in Google Scholar

[7] L.-S. Hahn, On multipliers of p-integrable functions, Trans. Amer. Math. Soc. 128 (1967), 321–335. 10.1090/S0002-9947-1967-0213820-9Search in Google Scholar

[8] L.-S. Hahn, A theorem of multipliers of type ( p , q ) , Proc. Amer. Math. Soc. 21 (1969), 493–495. 10.1090/S0002-9939-1969-0240555-6Search in Google Scholar

[9] L. Hörmander, Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), 93–140. 10.1007/BF02547187Search in Google Scholar

[10] E. H. Lieb and W. E. Thirring, Bound on kinetic energy of fermions which proves stability of matter, Phys. Rev. Lett. 35 (1975), 687–689. 10.1103/PhysRevLett.35.687Search in Google Scholar

[11] E. H. Lieb, The stability of matter: From atoms to stars, Bull. Amer. Math. Soc. (N. S.) 22 (1990), no. 1, 1–49. 10.1090/S0273-0979-1990-15831-8Search in Google Scholar

[12] A. K. Maity and P. K. Ratnakumar, Weyl multipliers for ( L p , L q ) , Monatsh. Math. 205 (2024), no. 1, 187–198. 10.1007/s00605-024-01997-5Search in Google Scholar

[13] P. K. Ratnakumar, Young’s inequality for the twisted convolution, J. Fourier Anal. Appl. 29 (2023), no. 6, Paper No. 69. 10.1007/s00041-023-10051-1Search in Google Scholar

[14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University, Princeton, 1970. 10.1515/9781400883882Search in Google Scholar

[15] A. Zygmund, Trigonometric Series. Vol. I, II, Cambridge University, Cambridge, 1977. Search in Google Scholar

Received: 2024-08-31
Revised: 2025-04-02
Accepted: 2025-06-09
Published Online: 2025-06-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2024-0145/html?lang=en
Scroll to top button