Abstract
We have demonstrated Young’s inequality for an orthonormal system for twisted convolution setup. As an application, we show some new Fourier multipliers.
Acknowledgements
The author thanks IISER Mohali for supporting the research via the institute postdoctoral fellowship.
References
[1]
R. J. Bagby,
On
[2] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, Pure Appl. Math. (New York), John Wiley & Sons, New York, 1984. Search in Google Scholar
[3] R. L. Frank, M. Lewin, E. H. Lieb and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 7, 1507–1526. 10.4171/jems/467Search in Google Scholar
[4] R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, Amer. J. Math. 139 (2017), no. 6, 1649–1691. 10.1353/ajm.2017.0041Search in Google Scholar
[5] S. Ghosh, S. S. Mondal and J. Swain, Strichartz inequality for orthonormal functions associated with special Hermite operator, Forum Math. 36 (2024), no. 3, 655–669. 10.1515/forum-2023-0115Search in Google Scholar
[6] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math. 249, Springer, New York, 2014. 10.1007/978-1-4939-1194-3Search in Google Scholar
[7] L.-S. Hahn, On multipliers of p-integrable functions, Trans. Amer. Math. Soc. 128 (1967), 321–335. 10.1090/S0002-9947-1967-0213820-9Search in Google Scholar
[8]
L.-S. Hahn,
A theorem of multipliers of type
[9]
L. Hörmander,
Estimates for translation invariant operators in
[10] E. H. Lieb and W. E. Thirring, Bound on kinetic energy of fermions which proves stability of matter, Phys. Rev. Lett. 35 (1975), 687–689. 10.1103/PhysRevLett.35.687Search in Google Scholar
[11] E. H. Lieb, The stability of matter: From atoms to stars, Bull. Amer. Math. Soc. (N. S.) 22 (1990), no. 1, 1–49. 10.1090/S0273-0979-1990-15831-8Search in Google Scholar
[12]
A. K. Maity and P. K. Ratnakumar,
Weyl multipliers for
[13] P. K. Ratnakumar, Young’s inequality for the twisted convolution, J. Fourier Anal. Appl. 29 (2023), no. 6, Paper No. 69. 10.1007/s00041-023-10051-1Search in Google Scholar
[14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University, Princeton, 1970. 10.1515/9781400883882Search in Google Scholar
[15] A. Zygmund, Trigonometric Series. Vol. I, II, Cambridge University, Cambridge, 1977. Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston