Abstract
When there are no constraints upon the solutions of the equation
References
[1] S.-I. Amari and A. Cichocki, Information geometry of divergence functions, Bull. Polish Acad. Sci. 58 (2010), 183β195. 10.2478/v10175-010-0019-1Search in Google Scholar
[2] S.-I. Amari, R. Karakida and M. Oizumi, Information geometry connecting Wasserstein distance and KullbackβLeibler divergence via the entropy-relaxed transportation problem, Inf. Geom. 1 (2018), no. 1, 13β37. 10.1007/s41884-018-0002-8Search in Google Scholar
[3] M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transport, Proceedings of the 26th International Conference on Neural Information Processing Systems. Vol. 2, Curran Associates, Red Hook (2013), 2292β2300. Search in Google Scholar
[4] D. Dacunha-Castelle and F. Gamboa, Maximum dβentropie et problΓ¨me des moments, Ann. Inst. Henri PoincarΓ© Probab. Stat. 26 (1990), no. 4, 567β596. Search in Google Scholar
[5] A. Golan and H. Gzyl, A generalized maxentropic inversion procedure for noisy data, Appl. Math. Comput. 127 (2002), no. 2β3, 249β260. 10.1016/S0096-3003(00)00172-7Search in Google Scholar
[6] H. Gzyl, Construction of contingency tables by maximum entropy in the mean, Comm. Statist. Theory Methods 50 (2021), no. 20, 4778β4786. 10.1080/03610926.2020.1723639Search in Google Scholar
[7] H. Gzyl and F. Nielsen, Geometry of the probability simplex and its connection to the maximum entropy method, J. Appl. Math. Stat. Inform. 16 (2020), no. 1, 25β35. 10.2478/jamsi-2020-0003Search in Google Scholar
[8] J. Z. Hearon, Generalized inverses and solutions of linear systems, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 303β308. 10.6028/jres.072B.030Search in Google Scholar
[9] N. J. Hicks, Notes on Differential Geometry, Van Nostrand Math. Stud. 3, D. Van Nostrand, Princeton, 1965. Search in Google Scholar
[10] G. Khan and J. Zhang, When optimal transport meets information geometry, Inf. Geom. 5 (2022), no. 1, 47β78. 10.1007/s41884-022-00066-wSearch in Google Scholar
[11] B. Muzellec, R. Nock, G. Patrini and F. Nielsen, Tsallis regularized optimal transport and ecological inference, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, Washington (2016), 2387β2393. 10.1609/aaai.v31i1.10854Search in Google Scholar
[12] S. Sternberg, Curvature in Mathematics and Physics, Dover Publications, Mineola, 2012. Search in Google Scholar
[13] T.-K. L. Wong, Logarithmic divergences from optimal transport and RΓ©nyi geometry, Inf. Geom. 1 (2018), no. 1, 39β78. 10.1007/s41884-018-0012-6Search in Google Scholar
[14] T.-K. L. Wong and J. Yang, Pseudo-Riemannian geometry encodes information geometry in optimal transport, Inf. Geom. 5 (2022), no. 1, 131β159. 10.1007/s41884-021-00053-7Search in Google Scholar PubMed PubMed Central
Β© 2024 Walter de Gruyter GmbH, Berlin/Boston