Abstract
In this paper we investigate a class of integrals that were encountered in the course of a work on statistical plasma physics, in the so-called Sommerfeld temperature-expansion of the electronic entropy. We show that such integrals, involving some parameters, can be fully described in closed form represented by special functions.
References
[1] H. Alzer and J. Choi, Four parametric linear Euler sums, J. Math. Anal. Appl. 484 (2020), no. 1, Article ID 123661. 10.1016/j.jmaa.2019.123661Search in Google Scholar
[2] P. Arnault, J. Racine, J.-P. Raucourt, A. Blanchet and J.-C. Pain, Sommerfeld expansion of electronic entropy in an inferno-like average atom model, Phys. Rev. B 108 (2023), Article ID 085115. 10.1103/PhysRevB.108.085115Search in Google Scholar
[3] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277–294. 10.1017/S0013091500019088Search in Google Scholar
[4] J. M. Borwein, D. J. Broadhurst and J. Kamnitzer, Central binomial sums, multiple Clausen values, and zeta values, Exp. Math. 10 (2001), no. 1, 25–34. 10.1080/10586458.2001.10504426Search in Google Scholar
[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. 1, McGraw-Hill, New York, 1981. Search in Google Scholar
[6] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math. 7 (1998), no. 1, 15–35. 10.1080/10586458.1998.10504356Search in Google Scholar
[7] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier, Amsterdam, 2014. Search in Google Scholar
[8]
A. Jonquière,
Note sur la série
[9] R. Kumar, P. Levrie, J.-C. Pain and V. Sharaschkin, A family of integrals related to values of the Riemann zeta function, Int. J. Number Theory (2024), 10.1142/S1793042125500319. 10.1142/S1793042125500319Search in Google Scholar
[10] L. Lewin, Polylogarithms and Associated Functions, North-Holland, Amsterdam, 1981. Search in Google Scholar
[11]
C. Li and W. Chu,
Integral Representations of
[12]
J.-C. Pain,
An integral representation for
[13] R. Sitaramachandra Rao, A formula of S. Ramanujan, J. Number Theory 25 (1987), no. 1, 1–19. 10.1016/0022-314X(87)90012-6Search in Google Scholar
[14] A. Sofo, General order Euler sums with rational argument, Integral Transforms Spec. Funct. 30 (2019), no. 12, 978–991. 10.1080/10652469.2019.1643851Search in Google Scholar
[15] A. Sofo and N. Batır, Parameterized families of polylog integrals, Constr. Math. Anal. 4 (2021), no. 4, 400–419. 10.33205/cma.1006384Search in Google Scholar
[16] A. Sofo and J. Choi, Extension of the four Euler sums being linear with parameters and series involving the zeta functions, J. Math. Anal. Appl. 515 (2022), no. 1, Article ID 126370. 10.1016/j.jmaa.2022.126370Search in Google Scholar
[17] A. Sofo and A. S. Nimbran, Euler sums and integral connections, Mathematics 7 (2019), Paper No. 833. 10.3390/math7090833Search in Google Scholar
[18] A. Sofo and A. S. Nimbran, Euler-like sums via powers of log, arctan and arctanh functions, Integral Transforms Spec. Funct. 31 (2020), no. 12, 966–981. 10.1080/10652469.2020.1765775Search in Google Scholar
[19] A. Sofo and H. M. Srivastava, A family of shifted harmonic sums, Ramanujan J. 37 (2015), no. 1, 89–108. 10.1007/s11139-014-9600-9Search in Google Scholar
[20] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic, Dordrecht, 2001. 10.1007/978-94-015-9672-5Search in Google Scholar
[21] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, 2011. 10.1016/B978-0-12-385218-2.00002-5Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston