Home Estimations of Levinson-type inequalities using novel 3-convex Green functions with Taylor’s formula
Article
Licensed
Unlicensed Requires Authentication

Estimations of Levinson-type inequalities using novel 3-convex Green functions with Taylor’s formula

  • Awais Rasheed EMAIL logo , Khuram Ali Khan , Josip Pečarić and Đilda Pečarić
Published/Copyright: November 14, 2024

Abstract

The goal of this study is to derive the generalized Levinson-type inequalities in the form of Taylor representation for higher order convex functions. This study uses Taylor’s formula and several novel types of 3-convex Green functions, to establish the novel identities associated with Bullen-type inequalities for higher order convex functions. Moreover, various Levinson-type inequalities are proved for positive real weights using Green functions and Taylor’s formula.

Acknowledgements

The authors wish to thank the editor for possible publication.

References

[1] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Generalization of the Levinson inequality with applications to information theory, J. Inequal. Appl. 2019 (2019), Paper No. 230. 10.1186/s13660-019-2186-4Search in Google Scholar

[2] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Levinson type inequalities for higher order convex functions via Abel–Gontscharoff interpolation, Adv. Difference Equ. 2019 (2019), Paper No. 430. 10.1186/s13662-019-2360-5Search in Google Scholar

[3] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by Levinson type inequalities via new Green’s functions and Lidstone polynomial, Adv. Difference Equ. 2020 (2020), Paper No. 27. 10.1186/s13662-020-2501-xSearch in Google Scholar

[4] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by using Levinson type inequalities for higher order convex functions via Hermite interpolating polynomial, J. Inequal. Appl. 2020 (2020), Paper No. 137. 10.1186/s13660-020-02403-ySearch in Google Scholar

[5] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Levinson-type inequalities via new Green functions and Montgomery identity, Open Math. 18 (2020), no. 1, 632–652. 10.1515/math-2020-0163Search in Google Scholar

[6] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by Levinson type inequalities via Lidstone interpolating polynomial, Trans. A. Razmadze Math. Inst. 175 (2021), no. 1, 1–11. 10.1007/s00010-021-00845-3Search in Google Scholar

[7] M. Adeel, K. A. Khan, Đ. Pečarić and J. Pečarić, Estimation of 𝔣 -divergence and Shannon entropy by Bullen type inequalities via Fink’s identity, Filomat 36 (2022), no. 2, 527–538. 10.2298/FIL2202527ASearch in Google Scholar

[8] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Math. Appl. 262, Kluwer Academic, Dordrecht, 1993. 10.1007/978-94-011-2026-5Search in Google Scholar

[9] I. Ansari, K. A. Khan, A. Nosheen, Đ. Pečarić and J. Pečarić, Estimation of divergences on time scales via the Green function and Fink’s identity, Adv. Difference Equ. 2021 (2021), Paper No. 394. 10.1186/s13662-021-03550-2Search in Google Scholar

[10] M. Bilal, K. A. Khan, A. Nosheen and J. Pečarić, Bounds of some divergence measures on time scales via Abel–Gontscharoff interpolation, Math. Slovaca 74 (2024), no. 2, 417–436. 10.1515/ms-2024-0032Search in Google Scholar

[11] M. Bilal, K. A. Khan, A. Nosheen and J. Pečarić, Bounds of some divergence measures using Hermite polynomial via diamond integrals on time scales, Qual. Theory Dyn. Syst. 23 (2024), no. 2, Paper No. 54. 10.1007/s12346-023-00911-ySearch in Google Scholar

[12] P. S. Bullen, An inequality of N. Levinson, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1973), no. 412–460, 109–112. Search in Google Scholar

[13] S. I. Butt, K. A. Khan and J. Pečarić, Generalization of Popoviciu inequality for higher order convex functions via Taylor polynomial, Acta Univ. Apulensis Math. Inform. 42 (2015), 181–200. 10.17114/j.aua.2015.42.12Search in Google Scholar

[14] S. I. Butt, K. A. Khan and J. Pečarić, Popoviciu type inequalities via Hermite’s polynomial, Math. Inequal. Appl. 19 (2016), no. 4, 1309–1318. 10.7153/mia-19-96Search in Google Scholar

[15] S. I. Butt, N. Mehmood and J. Pečarić, New generalizations of Popoviciu type inequalities via new Green functions and Fink’s identity, Trans. A. Razmadze Math. Inst. 171 (2017), no. 3, 293–303. 10.1016/j.trmi.2017.04.003Search in Google Scholar

[16] S. I. Butt and J. Pečarić, Weighted Popoviciu type inequalities via generalized Montgomery identities, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19(523) (2015), 69–89. Search in Google Scholar

[17] S. I. Butt and J. Pečarić, Popoviciu’s Inequality for N-Convex Functions, LAP Lambert Academic, London, 2016. Search in Google Scholar

[18] N. Latif, N. Siddique and J. Pečarić, Generalization of majorization theorem—II, J. Math. Inequal. 12 (2018), no. 3, 731–752. 10.7153/jmi-2018-12-56Search in Google Scholar

[19] N. Levinson, Generalization of an inequality of Ky Fan, J. Math. Anal. Appl. 8 (1964), 133–134. 10.1016/0022-247X(64)90089-7Search in Google Scholar

[20] N. Mehmood, R. P. Agarwal, S. I. Butt and J. Pečarić, New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity, J. Inequal. Appl. 2017 (2017), Paper No. 108. 10.1186/s13660-017-1379-ySearch in Google Scholar PubMed PubMed Central

[21] A. M. Mercer, 94.33 short proofs of Jensen’s and Levinson’s inequalities, Math. Gaz. 94 (2010), no. 531, 492–495. 10.1017/S0025557200001820Search in Google Scholar

[22] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Math. Appl. (East European Ser.) 61, Kluwer Academic, Dordrecht, 1993. 10.1007/978-94-017-1043-5Search in Google Scholar

[23] T. Niaz, K. A. Khan, Đ. Pečarić and J. Pečarić, Estimation of different entropies via Taylor one point and Taylor two points interpolations using Jensen type functionals, Int. J. Anal. Appl. 17 (2019), no. 5, 686–710. Search in Google Scholar

[24] J. E. Pečarić, On an inequality of N. Levinson, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1980), no. 678–715, 71–74. Search in Google Scholar

[25] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Math. Sci. Eng. 187, Academic Press, Boston, 1992. Search in Google Scholar

[26] T. Popoviciu, Sur une inegalite de N. Levinson, Math. (Cluj) 6 (1969), 301–306. Search in Google Scholar

[27] A. Rasheed, K. A. Khan, J. Pečarić and Đ. Pečarić, Generalizations of Levinson type inequalities via new Green functions with applications to information theory, J. Inequal. Appl. 2023 (2023), Paper No. 124. 10.1186/s13660-023-03040-xSearch in Google Scholar

[28] A. Rasheed, K. A. Khan, J. Pečarić and Đ. Pečarić, Generalizations of Levinson-type inequalities via new Green functions and Hermite interpolating polynomial, J. Inequal. Appl. 2024 (2024), Paper No. 70. 10.1186/s13660-024-03146-wSearch in Google Scholar

Received: 2024-05-04
Revised: 2024-10-08
Accepted: 2024-10-09
Published Online: 2024-11-14

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2024-0073/html?lang=en
Scroll to top button