Home Anisotropic obstacle Neumann problems in weighted Sobolev spaces and variable exponent
Article
Licensed
Unlicensed Requires Authentication

Anisotropic obstacle Neumann problems in weighted Sobolev spaces and variable exponent

  • Ghizlane Zineddaine , Abdelaziz Sabiry ORCID logo EMAIL logo , Said Melliani and Abderrazak Kassidi
Published/Copyright: September 3, 2024

Abstract

In this paper we focus on a certain class of anisotropic obstacle problems governed by a Leray–Lions operator. This problem is subject to homogeneous Neumann boundary conditions. By applying truncation techniques and the monotonicity method, we establish the existence of entropy solutions for the problem studied in the framework of anisotropic weighted Sobolev spaces with variable exponent.

A Appendix

Proof of Lemma 5.

Firstly, we will show that the operator B n is coercive. For all v , w W 1 , p ( z ) ( Ω , ϱ ) and by the generalized Hölder-type inequality, we have

| Φ n w , v | i = 1 N Ω b i ( T n ( w ) ) i v ϱ i - 1 p i ( z ) ( z ) ϱ i 1 p i ( z ) ( z ) 𝑑 z
i = 1 N ( Ω | b i ( T n ( w ) ) ϱ i - 1 p i ( z ) ( z ) | p i ( z ) 𝑑 z ) 1 p i - ( Ω | i v ϱ i 1 p i ( z ) ( z ) | p i 𝑑 z ) 1 p i -
i = 1 N ( Ω sup | s | n | b i ( s ) | p i ( z ) ϱ i - p i ( z ) p i ( z ) ( z ) d z ) 1 p i - ( Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
i = 1 N ( Ω ( sup | s | n | b i ( s ) | + 1 ) p i ( z ) ϱ i - 1 p i ( z ) - 1 ( z ) 𝑑 z ) 1 p i - ( Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
i = 1 N ( sup | s | n | b i ( s ) | + 1 ) ( Ω ϱ i - 1 p i ( z ) - 1 ( z ) 𝑑 z ) 1 p i - ( Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
C ( n ) v ,

which implies that

| Φ n u , v | | | v C ( n ) .

Let v 0 K Δ . Due to Hölder’s inequality and (2.5), by the continuous embeddings W 1 , p i ( z ) ( Ω , ϱ i ) L p i ( z ) ( Ω , ϱ i ) , we have

| A v , v 0 | i = 1 N Ω Φ i ( z , v , v ) i v 0 ϱ i - 1 p i ( z ) ( z ) ϱ i 1 p i ( z ) ( z ) 𝑑 z
i = 1 N ( Ω | Φ i ( z , v , v ) ϱ i - 1 p i ( z ) ( z ) | p i ( z ) 𝑑 z ) 1 p i - ( Ω | i v 0 ϱ i 1 p i ( z ) ( z ) | p i ( z ) 𝑑 z ) 1 p i -
β i = 1 N ( Ω R i p i ( z ) ( z ) + | v | p i ( z ) ϱ i ( z ) + | i v | p i ( z ) ϱ i ( z ) d z ) 1 p i - ( Ω | i v 0 | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
β i = 1 N ( C 1 + C 2 Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z + Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i - ( Ω | i v 0 | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
β i = 1 N C 1 1 p i - ( 1 + C 2 + 1 C 1 i = 1 N Ω | i v | p i ( z ) ϱ i 𝑑 z ) 1 p i - ( Ω | i v 0 | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
β C 4 i = 1 N ( 1 + C 2 + 1 C 1 i = 1 N Ω | i v | p i ( z ) ϱ i 𝑑 z ) 1 p - ( Ω | i v 0 | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
β C 4 i = 1 N ( 1 + C 3 ( i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p - ) ( Ω | i v 0 | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
β C 4 ( 1 + C 3 ( i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p - ) i = 1 N ( Ω | i v 0 | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i -
β C 4 ( 1 + C 3 ( i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p - ) v 0 ,

where

p - = min { p 1 - , , p N - } .

Therefore

| A v , v - v 0 | v α i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z v - β C 4 v 0 v - β C 4 C 3 v ( i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p - v 0 .

Then

(A.1) | A v , v - v 0 | v α i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z v [ 1 - β α C 4 C 3 ( i = 1 N Ω | i v | p i ( z ) 𝑑 z ) 1 p - - 1 v 0 ] - β C 4 v 0 v .

Using to Jensen’s inequality, we obtain

v p - + = ( i = 1 N ( Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ) 1 p i - ) p - +
( i = 1 N ( Ω | i v | p i ( z ) ϱ i 𝑑 z ) 1 p - + ) p - +
C i = 1 N Ω | i v | p i ( z ) ϱ i ( z ) 𝑑 z ,

where

p - + = { p - if  i v L p i ( z ) ( Ω , ϱ i ) 1 , p + if  i v L p i ( z ) ( Ω , ϱ i ) < 1 .

Then

i = 1 N Ω | i v | p i ( z ) ϱ i 𝑑 z v + and i = 1 N Ω | i v | p i ( z ) ϱ i 𝑑 z +

as v + . From (A.1), we have

| A v , v - v 0 | v + as  v + .

Since Φ n v , v v and Φ n v , v 0 v are bounded, we get

B n v , v , - v 0 v = A v , v - v 0 v + Φ n v , v , - v 0 v + as  v + .

We conclude that the operator B n = A + Φ n is coercive.

Secondly, it remains to prove that the operator B n is pseudo-monotone. To this end, let ( w k ) k be a sequence in W 1 , p ( z ) ( Ω , ϱ ) such that

{ w k w weakly in  W 1 , p ( z ) ( Ω , ϱ ) , B n w k χ weakly in  W - 1 , p ( Ω , ϱ * ) , lim sup k + B n w k , w k χ , u .

We will show that χ = B n w and B n w k , w k χ , w as k + . Since W 1 , p ( z ) ( Ω , ϱ ) L p ¯ ( Ω ) , it follows that w k w strongly in L p ¯ ( Ω ) and a.e. in Ω for a subsequence denoted again ( w k ) k . Since ( w k ) k is bounded in W 1 , p ( z ) ( Ω , ϱ ) by (2.5), we have ( Φ i ( z , w k , w k ) ) k is bounded in L p i ( z ) ( Ω , ϱ i * ) . Then there exists a function φ i L p i ( z ) ( Ω , ϱ i * ) such that

(A.2) Φ i ( z , w k , w k ) φ i as  k + .

Moreover, since ( b i n ( w k ) ) k is bounded in L p i ( z ) ( Ω , ϱ i * ) and b i n ( w k ) b i n ( w ) a.e. in Ω, we have

(A.3) b i n ( w k ) b i n ( w ) strongly in  L p i ( z ) ( Ω , ϱ i ) as  k + .

For all v W 1 , p ( z ) ( Ω , ϱ ) using (A.2) and (A.3), we obtain

χ , v = lim k + B n w k , v
= lim k + i = 1 N Ω Φ i ( z , w k , w k ) i v d z + lim k + i = 1 N Ω b i n ( w k ) i v d z
= i = 1 N Ω φ i i v d z + i = 1 N Ω b i n ( w ) i v d z .

Hence, we get

lim sup k + B n w k , w k = lim sup k + [ i = 1 N Ω Φ i ( z , w k , w k ) i w k d z + i = 1 N Ω b i n ( w k ) i w k d z ]
= lim sup k + i = 1 N Ω Φ i ( z , w k , w k ) i w k d z + i = 1 N Ω b i n ( w ) i w d z
χ , w
= i = 1 N Ω φ i i w d z + i = 1 N Ω b i n ( w ) i w d z

as a result

(A.4) lim sup k + i = 1 N Ω Φ i ( z , w k , w k ) i w k d z i = 1 N Ω φ i i w d z .

Thanks to (2.6), we have i = 1 N Ω ( Φ i ( z , w k , w k ) - Φ i ( z , w k , w ) ) ( i w k - i w ) d z 0 . Then

i = 1 N Ω Φ i ( z , w k , w k ) i w k d z - i = 1 N Ω Φ i ( z , w k , w ) i w d z + i = 1 N Ω Φ i ( z , w k , w k ) i w d z
+ i = 1 N Ω Φ i ( z , w k , w ) i w k d z .

By (A.2), we obtain

(A.5) lim inf k + i = 1 N Ω Φ i ( z , w k , w k ) i w k d z i = 1 N Ω φ i i w d z .

Using (A.4) and (A.5), we have

(A.6) lim k + i = 1 N Ω Φ i ( z , w k , w k ) i w k d z = i = 1 N Ω φ i i w d z ,

which implies that

lim k + B n w k , w k = lim k + i = 1 N Ω Φ i ( z , w k , w k ) i w k d z + lim k + i = 1 N Ω b i n ( w k ) i w k d z
= i = 1 N Ω φ i i w d z + i = 1 N Ω b i n ( w ) i w d z
= χ , w .

Moreover, since a i ( z , w k , w ) converges to Φ i ( z , w , w ) strongly in L p i ( z ) ( Ω , ϱ i ) by (A.6), we get

i = 1 N Ω ( Φ i ( z , w k , w k ) - Φ i ( z , w k , w ) ) ( i w k - i w ) 𝑑 z = 0 .

By Lemma 3, we have w k converges to w strongly in W 1 , p ( z ) ( Ω , ϱ ) and a.e. in Ω, then Φ i ( z , w k , w ) converges to Φ i ( z , w , w ) weakly in L p i ( z ) ( Ω , ϱ i ) and b i n ( w ) converges to b i n ( w ) strongly in L p i ( z ) ( Ω , ϱ i ) . Then for all v W 1 , p ( z ) ( Ω , ϱ ) we obtain

χ , v = lim k + B n w k , v
= lim k + i = 1 N Ω Φ i ( z , w k , w k ) i v d z + lim k + i = 1 N Ω b i ( w k ) i v d z
= i = 1 N Ω Φ i ( z , w , w ) i v d z + i = 1 N Ω b i ( w ) i v d z
= B n w , v

which implies that B n w = χ . ∎

References

[1] A. Abbassi, C. Allalou and A. Kassidi, Anisotropic elliptic nonlinear obstacle problem with weighted variable exponent, J. Math. Study 54 (2021), no. 4, 337–356. 10.4208/jms.v54n4.21.01Search in Google Scholar

[2] A. Abbassi, C. Allalou and A. Kassidi, Existence of entropy solutions for anisotropic elliptic nonlinear problem in weighted Sobolev space, Nonlinear Analysis: Problems, Applications and Computational Methods, Lect. Notes Netw. Syst. 168, Springer, Cham (2021), 102–122. 10.1007/978-3-030-62299-2_8Search in Google Scholar

[3] A. Abbassi, C. Allalou and A. Kassidi, Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted Sobolev space, Bol. Soc. Parana. Mat. (3) 40 (2022), 22. 10.5269/bspm.52541Search in Google Scholar

[4] A. Abbassi, E. Azroul and A. Barbara, Degenerate p ( z ) -elliptic equation with second membre in L 1 , Adv. Sci. Technol. Eng. Syst. J. 2 (2017), 45–54. 10.25046/aj020509Search in Google Scholar

[5] Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations, Electron. J. Differential Equations 2001 (2001), Paper No. 71. Search in Google Scholar

[6] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no. 1, 19–36. 10.1007/s11565-006-0002-9Search in Google Scholar

[7] E. Azroul, M. Bouziani and A. Barbara, Existence of entropy solutions for anisotropic quasilinear degenerated elliptic problems with Hardy potential, SeMA J. 78 (2021), no. 4, 475–499. 10.1007/s40324-021-00247-0Search in Google Scholar

[8] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241–273. Search in Google Scholar

[9] L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in L 1 , Differential Integral Equations 9 (1996), no. 1, 209–212. 10.57262/die/1367969997Search in Google Scholar

[10] H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1992. Search in Google Scholar

[11] M. Chrif and S. El Manouni, Anisotropic equations in weighted Sobolev spaces of higher order, Ric. Mat. 58 (2009), no. 1, 1–14. 10.1007/s11587-009-0045-1Search in Google Scholar

[12] G. Di Fazio, D. K. Palagachev and M. A. Ragusa, Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (1999), no. 2, 179–196. 10.1006/jfan.1999.3425Search in Google Scholar

[13] P. Drábek, A. Kufner and V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Aust. Math. Soc. 58 (1998), no. 2, 213–221. 10.1017/S0004972700032184Search in Google Scholar

[14] P. Drábek and F. Nicolosi, Existence of bounded solutions for some degenerated quasilinear elliptic equations, Ann. Mat. Pura Appl. (4) 165 (1993), 217–238. 10.1007/BF01765850Search in Google Scholar

[15] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985. Search in Google Scholar

[16] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Search in Google Scholar

[17] Y. Liu, R. Davidson and P. Taylor, Investigation of the touch sensitivity of ER uid based tactile display, Proc. SPIE 5764 (2005), 92–99. 10.1117/12.598713Search in Google Scholar

[18] A. Mercaldo, I. Peral and A. Primo, Results for degenerate nonlinear elliptic equations involving a Hardy potential, J. Differential Equations 251 (2011), no. 11, 3114–3142. 10.1016/j.jde.2011.07.024Search in Google Scholar

[19] M. A. Ragusa and P. Zamboni, A potential theoretic inequality, Czechoslovak Math. J. 51(126) (2001), no. 1, 55–65. 10.1023/A:1013749603910Search in Google Scholar

[20] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2002. Search in Google Scholar

[21] A. Sabiry, S. Melliani and A. Kassidi, Certain regularity results of p ( z ) -parabolic problems with measure data, Asia Pac. J. Math. 10 (2023), 1–20. Search in Google Scholar

[22] A. Sabiry, G. Zineddaine, S. Melliani and A. Kassidi, Some results on existence and regularity for non-linear p ( x ) -parabolic equations with quadratic growth with respect to the gradient and general data, Filomat 37 (2023), no. 22, 7559–7579. 10.2298/FIL2322559SSearch in Google Scholar

Received: 2024-02-04
Revised: 2024-06-04
Accepted: 2024-07-02
Published Online: 2024-09-03

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2024-0023/html
Scroll to top button