Abstract
In this paper, we first consider the
References
[1] L. Ambrozio, On static three-manifolds with positive scalar curvature, J. Differential Geom. 107 (2017), no. 1, 1–45. 10.4310/jdg/1505268028Search in Google Scholar
[2] R. Bach, Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs, Math. Z. 9 (1921), no. 1–2, 110–135. 10.1007/BF01378338Search in Google Scholar
[3] F. Carolina and N. Jose, A Riemannian manifolds dual to static spacetimes, Gen. Rel. Grav. 52 (2020), Paper No. 84. 10.1007/s10714-020-02736-5Search in Google Scholar
[4] Q. Chen and C. He, On Bach flat warped product Einstein manifolds, Pacific J. Math. 265 (2013), no. 2, 313–326. 10.2140/pjm.2013.265.313Search in Google Scholar
[5] Y. Cho, Y. Degura and K. Shiraishi, Extremely charged static perfect fluid distributions with dilaton in curved spacetimes, Phys. Rev. 62 (2000), Article ID 084038. 10.1103/PhysRevD.62.084038Search in Google Scholar
[6] J. Costa, R. Diógenes, N. Pinheiro and E. Ribeiro, Jr., Geometry of static perfect fluid space-time, Classical Quantum Gravity 40 (2023), no. 20, Article ID 205012. 10.1088/1361-6382/acf8a7Search in Google Scholar
[7] F. Coutinho, R. Diógenes, B. Leandro and E. Ribeiro, Jr., Static perfect fluid space-time on compact manifolds, Classical Quantum Gravity 37 (2020), no. 1, Article ID 015003. 10.1088/1361-6382/ab5402Search in Google Scholar
[8] K. Jusufi, I. Sakallı and A. Övgün, Effect of Lorentz symmetry breaking on the deflection of light in a cosmic string spacetime, Phys. Rev. D 96 (2017), no. 2, Article ID 024040. 10.1103/PhysRevD.96.024040Search in Google Scholar
[9] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93–103. 10.2748/tmj/1178241594Search in Google Scholar
[10] M. Khatri and J. P. Singh, Static perfect fluid spacetime on contact metric manifolds, preprint (2021), https://arxiv.org/abs/2112.10112. Search in Google Scholar
[11] W. Kühnel and H.-B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Differential Geom. Appl. 7 (1997), no. 3, 237–250. 10.1016/S0926-2245(96)00052-6Search in Google Scholar
[12] H. A. Kumara, M. M. Praveena and D. M. Naik, On Einstein-type almost Kenmotsu manifolds, Analysis 43 (2023), no. 3, 141–147. 10.1515/anly-2022-1058Search in Google Scholar
[13] H. A. Kumara, V. Venkatesha and D. M. Naik, Static perfect fluid space-time on almost Kenmotsu manifolds, J. Geom. Symmetry Phys. 61 (2021), 41–51. 10.7546/jgsp-61-2021-41-51Search in Google Scholar
[14] B. Leandro and N. Solórzano, Static perfect fluid spacetime with half conformally flat spatial factor, Manuscripta Math. 160 (2019), no. 1–2, 51–63. 10.1007/s00229-018-1042-zSearch in Google Scholar
[15] P. M. Mundalamane, B. C. Shanthappa and M. S. Siddesha, Solitons of Kählerian Norden space-time manifolds, Commun. Korean Math. Soc. 37 (2022), no. 3, 813–824. Search in Google Scholar
[16] D. M. Naik, Ricci solitons on Riemannian manifolds admitting certain vector field, Ric. Mat. 73 (2024), no. 1, 531–546. 10.1007/s11587-021-00622-zSearch in Google Scholar
[17] M. M. Praveena, C. S. Bagewadi and M. R. Krishnamurthy, Solitons of Kählerian space-time manifolds, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Article ID 2150021. 10.1142/S0219887821500213Search in Google Scholar
[18] Y. Shen, A note on Fischer–Marsden’s conjecture, Proc. Amer. Math. Soc. 125 (1997), no. 3, 901–905. 10.1090/S0002-9939-97-03635-6Search in Google Scholar
[19] S. Soroushfar, B. Pourhassan and I. Sakallı, Exploring non-perturbative corrections in thermodynamics of static dirty black holes, Phys. Dark Universe 44 (2024), Article ID 101457. 10.1016/j.dark.2024.101457Search in Google Scholar
[20] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251–275. 10.1090/S0002-9947-1965-0174022-6Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston