Home Modification of self-reinforced composites (SRCs) via film stacking process
Article
Licensed
Unlicensed Requires Authentication

Modification of self-reinforced composites (SRCs) via film stacking process

  • Fabian Jakob EMAIL logo , Joshua Pollmeier , Sinan Bisevac and Hans-Peter Heim
Published/Copyright: February 25, 2022
Become an author with De Gruyter Brill

Abstract

This work presents the mechanical behavior of self-reinforced composites (SRCs) manufactured and modified via film stacking. For modification, interleaved films made of polypropylene (PP), a thermoplastic elastomer and a polyolefin engage were combined in different ways to induce the elastic modifier into the matrix material. The content of modifier was also varied in two ways. First, the films were produced out of a single material and second out of a compound. So, the same content of modifier was implemented in two different ways. It is shown that, in case of this research, only the kind of modifier and the content but not the way of implementation are responsible for the mechanical behavior of SRCs. It is shown that the modification can adjust the tensile strength, tensile stiffness and impact properties in a broad range. It is also shown that different mechanical properties of the composite can be predicted by a regression model that uses the Shore A hardness and the content of modifier.


Corresponding author: Fabian Jakob, IfW Plastics Technology, University of Kassel, Mönchebergstrasse 3, 34125 Kassel, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abraham, T., Wanjale, S.D., Bárány, T., and Karger-Kocsis, J. (2009). Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: effect of β nucleation of the matrix. Compos. Appl. Sci. Manuf. 40: 662–668, https://doi.org/10.1016/j.compositesa.2009.03.001.Search in Google Scholar

Alcock, B., Cabrera, N., Barkoula, N.-M., Loos, J., and Peijs, T. (2007). Interfacial properties of highly oriented coextruded polypropylene tapes for the creation of recyclable all-polypropylene composites. J. Appl. Polym. Sci. 104: 118–129, https://doi.org/10.1002/app.24588.Search in Google Scholar

Alcock, B., Cabrera, N., Barkoula, N.-M., Wang, Z., and Peijs, T. (2008). The effect of temperature and strain rate on the impact performance of recyclable all-polypropylene composites. Composites, Part B, 39: 537–547, https://doi.org/10.1016/j.compositesb.2007.03.003.Search in Google Scholar

Andrzejewski, J., Szostak, M., Bak, T., and Trzeciak, M. (2016). The influence of processing conditions on the mechanical properties and structure of poly(ethylene terephthalate) self-reinforced composites. J. Thermoplast. Compos. Mater. 29: 1194–1209, https://doi.org/10.1177/0892705714563117.Search in Google Scholar

Banik, K., Karger-Kocsis, J., and Abraham, T. (2008). Flexural creep of all-polypropylene composites: model analysis. Polym. Eng. Sci. 48: 941–948, https://doi.org/10.1002/pen.21041.Search in Google Scholar

Bárány, T., Izer, A., and Czigány, T. (2006a). On consolidation of self-reinforced polypropylene composites. Plast. Rubber Compos. 35: 375–379.10.1179/174328906X128234Search in Google Scholar

Bárány, T., Izer, A., and Czigány, T. (2007). High performance self-reinforced polypropylene composites. Mater. Sci. Forum 537–538: 121–128, https://doi.org/10.4028/www.scientific.net/MSF.537-538.121.Search in Google Scholar

Bárány, T., Izer, A., and Karger-Kocsis, J. (2009). Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym. Test. 28: 176–182, https://doi.org/10.1016/j.polymertesting.2008.11.011.Search in Google Scholar

Bárány, T., Karger-Kocsis, J., and Czigány, T. (2006b). Development and characterization of self-reinforced poly(propylene) composites. Carded mat reinforcement. Polym. Adv. Technol. 17: 818–824, https://doi.org/10.1002/pat.813.Search in Google Scholar

Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Petersen, M., Ries, A., and Wagner, T. (2012). Computer-aided planning and optimisation of manufacturing processes for functional graded components. In: Heim, H.-P., Biermann, D., and Maier, H. (Eds.), 1st international conference on thermo-mechanically graded materials. Verlag Wissenschaftliche Scripten, Auerbach, pp. 195–200.Search in Google Scholar

Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Peters, G., Ries, A., and Wagner, T. (2015). Planning and optimisation of manufacturing process chains for functionally graded components—part 2: case study on self-reinforced thermoplastic composites. Prod. Eng. Res. Dev. 9: 405–416, https://doi.org/10.1007/s11740-015-0610-2.Search in Google Scholar

Bledzki, A., Heim, H.-P., Paßmann, D., and Ries, A. (2012). Manufacturing of self-reinforced all-PP composites. In: Bhattacharyya, D. and Fakirov, S. (Eds.), Synthetic all-polymer composites. Hanser Publishers, Cincinnati, pp. 719–738.10.3139/9781569905258.022Search in Google Scholar

Bledzki, A., Paßmann, D., Ries, A., and Cate, A. (2008). Funktionelle Gradierung der Impakteigenschaften eigenverstärkter PP-Faserverbunde beim Heißkompaktieren. Mater. Test. 50: 623–631, https://doi.org/10.3139/120.100924.Search in Google Scholar

Chen, J. (2011). Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate) composites. eXPRESS Polym. Lett. 5: 228–237, https://doi.org/10.3144/expresspolymlett.2011.22.Search in Google Scholar

El-Maaty, M., Bassett, D., Olley, R., Hine, P., and Ward, I. (1996). The hot compaction of polypropylene fibres. J. Mater. Sci. 31: 1157–1163, https://doi.org/10.1007/BF00353094.Search in Google Scholar

Gindl, W. and Keckes, J. (2005). All-cellulose nanocomposite. Polymer 46: 10221–10225, https://doi.org/10.1016/j.polymer.2005.08.040.Search in Google Scholar

Heim, H.-P., Rohde, B., and Ries, A. (2012). Influence of the process conditions on the morphology-poperty-relationship of self-reinforced PP-composite. In: Heim, H.-P., Biermann, D., and Maier, H. (Eds.), 1st international conference on thermo-mechanically graded materials. Verlag Wissenschaftliche Scripten, Auerbach, pp. 247–252.Search in Google Scholar

Heim, H.-P., Rohde, B., and Ries, A. (2014). Morphology-property-relationship of thermo-mechanically graded self-reinforced polypropylene composites. In: AIP conference proceedings, Vol. 776, AIP Publishing, pp. 776–779. https://doi.org/10.1063/1.4873890 (Accessed 16.12.2021).Search in Google Scholar

Heim, H.-P., Rohde, B., Ries, A., Faulhaber, K., Saleski, N., Hohmann, C., and Salzmann, C. (2013a). Thermo-mechanical match mould forming of self-reinforced thermoplastic gradient materials. In: Heim, H.-P., Biermann, D., and Homberg, W. (Eds.), Functionally graded materials in industrial mass production, Vol. 2. Verlag Wissenschaftliche Scripten, Auerbach, pp. 97–112.Search in Google Scholar

Heim, H.-P., Tillmann, W., Ries, A., Sievers, N., Rohde, B., and Zielke, R. (2013b). Visualisation of the degrees of compaction of self-reinforced polypropylene composites by means of ultrasonic testing. J. Plast. Technol. 9: 275–294.Search in Google Scholar

Hine, P., Bonner, M., Ward, I., Swolfs, Y., and Verpoest, I. (2017). The influence of the hybridisation configuration on the mechanical properties of hybrid self reinforced polyamide 12/carbon fibre composites. Compos. Appl. Sci. Manuf. 95: 141–151, https://doi.org/10.1016/j.compositesa.2016.12.029.Search in Google Scholar

Hine, P., Bonner, M., Ward, I., Swolfs, Y., Verpoest, I., and Mierzwa, A. (2014). Hybrid carbon fibre/nylon 12 single polymer composites. Compos. Appl. Sci. Manuf. 65: 19–26, https://doi.org/10.1016/j.compositesa.2014.05.020.Search in Google Scholar

Hine, P. and Ward, I. (2006). Hot compaction of woven nylon 6,6 multifilaments. J. Appl. Polym. Sci. 101: 991–997, https://doi.org/10.1002/app.22771.Search in Google Scholar

Hine, P., Ward, I., Jordan, N., Olley, R., and Bassett, D. (2003). The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties. Polymer 44: 1117–1131, https://doi.org/10.1016/S0032-3861(02)00809-1.Search in Google Scholar

Hine, P., Ward, I., Olley, R., and Bassett, D. (1993). The hot compaction of high modulus melt-spun polyethylene fibres. J. Mater. Sci. 28: 316–324, https://doi.org/10.1007/BF00357801.Search in Google Scholar

Ismail, Y., Richardson, M., and Olley, R. (2001). Optimizing impact properties of PP composites by control of spherulitic morphology. J. Appl. Polym. Sci. 79: 1704–1715, https://doi.org/10.1002/1097-4628(20010228)79:9<1704::aid-app200>3.0.co;2-y.10.1002/1097-4628(20010228)79:9<1704::AID-APP200>3.0.CO;2-YSearch in Google Scholar

Izer, A. (2010). Effect of consolidation on the flexural creep behaviour of all-polypropylene composite. eXPRESS Polym. Lett. 4: 210–216, https://doi.org/10.3144/expresspolymlett.2010.27.Search in Google Scholar

Jerpdal, L. and Åkermo, M. (2014). Influence of fibre shrinkage and stretching on the mechanical properties of self-reinforced poly(ethylene terephthalate) composite. J. Reinf. Plast. Compos. 33: 1644–1655, https://doi.org/10.1177/0731684414541018.Search in Google Scholar

Jerpdal, L., Åkermo, M., Ståhlberg, D., and Herzig, A. (2018). Process induced shape distortions of self-reinforced poly(ethylene terephthalate) composites. Compos. Struct. 193: 29–34, https://doi.org/10.1016/j.compstruct.2018.03.038.Search in Google Scholar

Jerpdal, L., Ståhlberg, D., and Åkermo, M. (2016). Influence of fibre stretching on the microstructure of self-reinforced poly(ethylene terephthalate) composite. J. Reinf. Plast. Compos. 35: 1634–1641, https://doi.org/10.1177/0731684416662328.Search in Google Scholar

Karger-Kocsis, J., Wanjale, S., Abraham, T., Bárány, T., and Apostolov, A. (2010). Preparation and characterization of polypropylene homocomposites. Exploiting polymorphism of PP homopolymer. J. Appl. Polym. Sci. 115: 684–691, https://doi.org/10.1002/app.30624.Search in Google Scholar

Kmetty, A., Bárány, T., and Karger-Kocsis, J. (2010). Self-reinforced polymeric materials: a review. Prog. Polym. Sci. 35: 1288–1310, https://doi.org/10.1016/j.progpolymsci.2010.07.002.Search in Google Scholar

Le Bozec, Y., Kaang, S., Hine, P., and Ward, I. (2000). The thermal-expansion behaviour of hot-compacted polypropylene and polyethylene composites. Compos. Sci. Technol. 60: 333–344, https://doi.org/10.1016/S0266-3538(99)00129-3.Search in Google Scholar

Mesquita, F., van Gysel, A., Selezneva, M., Swolfs, Y., Lomov, S., and Gorbatikh, L. (2018). Flexural behaviour of corrugated panels of self-reinforced polypropylene hybridised with carbon fibre: an experimental and modelling study. Composites, Part B, 153: 437–444, https://doi.org/10.1016/j.compositesb.2018.09.017.Search in Google Scholar

Paßmann, D. (2009). Prozessinduzierte Gradierung eigenverstärkter Polypropylen-Faserverbunde beim Heißkompaktieren und Umformen. PPH ZAPOL Dmochowski, Sobczyk Spółka Jawna, Szczecin.Search in Google Scholar

Poulikidou, S., Jerpdal, L., Björklund, A., and Åkermo, M. (2016). Environmental performance of self-reinforced composites in automotive applications — case study on a heavy truck component. Mater. Des. 103: 321–329, https://doi.org/10.1016/j.matdes.2016.04.090.Search in Google Scholar

Rasburn, J., Hine, P., Ward, I., Olley, R., Bassett, D., and Kabeel, M. (1995). The hot compaction of polyethylene terephthalate. J. Mater. Sci. 30: 615–622, https://doi.org/10.1007/BF00356319.Search in Google Scholar

Ries, A. (2015). Thermo-mechanische Gradierung eigenverstärkter Polypropylen-Composite. Kassel University Press, Kassel.Search in Google Scholar

Rohde, B., Wibbeke, A., Heim, H.-P., and Schöppner, V. (2014). The manufacture of hot-compacted layered composite systems made of oriented semifinished PP-films. ISRN Polym. Sci. 2014: 1–9, https://doi.org/10.1155/2014/601741.Search in Google Scholar

Schneider, C., Kazemahvazi, S., Åkermo, M., and Zenkert, D. (2013). Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites. Polym. Test. 32: 221–230, https://doi.org/10.1016/j.polymertesting.2012.11.002.Search in Google Scholar

Schöppner, V., Heim, H.-P., Wibbeke, A., Ries, A., and Rohde, B. (2013). Graded structures in polymers. In: Homberg, W., Biermann, D., and Heim, H.-P. (Eds.), Functionally graded materials in industrial mass production. Fundamentals. Wissenschaftliche Scripten, Auerbach, pp. 11–42.Search in Google Scholar

Selezneva, M., Swolfs, Y., Katalagarianakis, A., Ichikawa, T., Hirano, N., Taketa, I., Karaki, T., Verpoest, I., and Gorbatikh, L. (2018). The brittle-to-ductile transition in tensile and impact behavior of hybrid carbon fibre/self-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 109: 20–30, https://doi.org/10.1016/j.compositesa.2018.02.034.Search in Google Scholar

Swolfs, Y., Cuyper, P., Callens, M., Verpoest, I., and Gorbatikh, L. (2017). Hybridisation of two ductile materials – steel fibre and self-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 100: 48–54, https://doi.org/10.1016/j.compositesa.2017.05.001.Search in Google Scholar

Tang, J., Swolfs, Y., Yang, M., Michielsen, K., Ivens, J., Lomov, S., and Gorbatikh, L. (2018). Discontinuities as a way to influence the failure mechanisms and tensile performance of hybrid carbon fiber/self-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 107: 354–365, https://doi.org/10.1016/j.compositesa.2018.01.020.Search in Google Scholar

Wang, J., Chen, J., and Dai, P. (2014). Polyethylene naphthalate single-polymer-composites produced by the undercooling melt film stacking method. Compos. Sci. Technol. 91: 50–54, https://doi.org/10.1016/j.compscitech.2013.11.026.Search in Google Scholar

Wang, J., Chen, J., Dai, P., Wang, S., and Chen, D. (2015). Properties of polypropylene single-polymer composites produced by the undercooling melt film stacking method. Compos. Sci. Technol. 107: 82–88, https://doi.org/10.1016/j.compscitech.2014.12.006.Search in Google Scholar

Wright, D., Lautenschlager, E., and Gilbert, J. (1997). Bending and fracture toughness of woven self‐reinforced composite poly(methyl methacrylate). J. Biomed. Mater. Res. 36: 441–453, https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<441::AID-JBM2>3.0.CO;2-E.10.1002/(SICI)1097-4636(19970915)36:4<441::AID-JBM2>3.0.CO;2-ESearch in Google Scholar

Wu, C., Chang, C., Wang, C., and Lin, C. (2012). Optimum consolidation of all-polyester woven fabric-reinforced composite laminates by film stacking. Polym. Compos. 33: 245–252, https://doi.org/10.1002/pc.22146.Search in Google Scholar

Zhang, J. and Peijs, T. (2010). Self-reinforced poly(ethylene terephthalate) composites by hot consolidation of Bi-component PET yarns. Compos. Appl. Sci. Manuf. 41: 964–972, https://doi.org/10.1016/j.compositesa.2010.03.012.Search in Google Scholar

Zhang, J., Reynolds, C.T., and Peijs, T. (2009). All-poly(ethylene terephthalate) composites by film stacking of oriented tapes. Compos. Appl. Sci. Manuf. 40: 1747–1755, https://doi.org/10.1016/j.compositesa.2009.08.008.Search in Google Scholar

Received: 2020-08-19
Accepted: 2021-08-18
Published Online: 2022-02-25
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2021-4025/html
Scroll to top button