Abstract
This work presents the mechanical behavior of self-reinforced composites (SRCs) manufactured and modified via film stacking. For modification, interleaved films made of polypropylene (PP), a thermoplastic elastomer and a polyolefin engage were combined in different ways to induce the elastic modifier into the matrix material. The content of modifier was also varied in two ways. First, the films were produced out of a single material and second out of a compound. So, the same content of modifier was implemented in two different ways. It is shown that, in case of this research, only the kind of modifier and the content but not the way of implementation are responsible for the mechanical behavior of SRCs. It is shown that the modification can adjust the tensile strength, tensile stiffness and impact properties in a broad range. It is also shown that different mechanical properties of the composite can be predicted by a regression model that uses the Shore A hardness and the content of modifier.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abraham, T., Wanjale, S.D., Bárány, T., and Karger-Kocsis, J. (2009). Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: effect of β nucleation of the matrix. Compos. Appl. Sci. Manuf. 40: 662–668, https://doi.org/10.1016/j.compositesa.2009.03.001.Search in Google Scholar
Alcock, B., Cabrera, N., Barkoula, N.-M., Loos, J., and Peijs, T. (2007). Interfacial properties of highly oriented coextruded polypropylene tapes for the creation of recyclable all-polypropylene composites. J. Appl. Polym. Sci. 104: 118–129, https://doi.org/10.1002/app.24588.Search in Google Scholar
Alcock, B., Cabrera, N., Barkoula, N.-M., Wang, Z., and Peijs, T. (2008). The effect of temperature and strain rate on the impact performance of recyclable all-polypropylene composites. Composites, Part B, 39: 537–547, https://doi.org/10.1016/j.compositesb.2007.03.003.Search in Google Scholar
Andrzejewski, J., Szostak, M., Bak, T., and Trzeciak, M. (2016). The influence of processing conditions on the mechanical properties and structure of poly(ethylene terephthalate) self-reinforced composites. J. Thermoplast. Compos. Mater. 29: 1194–1209, https://doi.org/10.1177/0892705714563117.Search in Google Scholar
Banik, K., Karger-Kocsis, J., and Abraham, T. (2008). Flexural creep of all-polypropylene composites: model analysis. Polym. Eng. Sci. 48: 941–948, https://doi.org/10.1002/pen.21041.Search in Google Scholar
Bárány, T., Izer, A., and Czigány, T. (2006a). On consolidation of self-reinforced polypropylene composites. Plast. Rubber Compos. 35: 375–379.10.1179/174328906X128234Search in Google Scholar
Bárány, T., Izer, A., and Czigány, T. (2007). High performance self-reinforced polypropylene composites. Mater. Sci. Forum 537–538: 121–128, https://doi.org/10.4028/www.scientific.net/MSF.537-538.121.Search in Google Scholar
Bárány, T., Izer, A., and Karger-Kocsis, J. (2009). Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym. Test. 28: 176–182, https://doi.org/10.1016/j.polymertesting.2008.11.011.Search in Google Scholar
Bárány, T., Karger-Kocsis, J., and Czigány, T. (2006b). Development and characterization of self-reinforced poly(propylene) composites. Carded mat reinforcement. Polym. Adv. Technol. 17: 818–824, https://doi.org/10.1002/pat.813.Search in Google Scholar
Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Petersen, M., Ries, A., and Wagner, T. (2012). Computer-aided planning and optimisation of manufacturing processes for functional graded components. In: Heim, H.-P., Biermann, D., and Maier, H. (Eds.), 1st international conference on thermo-mechanically graded materials. Verlag Wissenschaftliche Scripten, Auerbach, pp. 195–200.Search in Google Scholar
Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Peters, G., Ries, A., and Wagner, T. (2015). Planning and optimisation of manufacturing process chains for functionally graded components—part 2: case study on self-reinforced thermoplastic composites. Prod. Eng. Res. Dev. 9: 405–416, https://doi.org/10.1007/s11740-015-0610-2.Search in Google Scholar
Bledzki, A., Heim, H.-P., Paßmann, D., and Ries, A. (2012). Manufacturing of self-reinforced all-PP composites. In: Bhattacharyya, D. and Fakirov, S. (Eds.), Synthetic all-polymer composites. Hanser Publishers, Cincinnati, pp. 719–738.10.3139/9781569905258.022Search in Google Scholar
Bledzki, A., Paßmann, D., Ries, A., and Cate, A. (2008). Funktionelle Gradierung der Impakteigenschaften eigenverstärkter PP-Faserverbunde beim Heißkompaktieren. Mater. Test. 50: 623–631, https://doi.org/10.3139/120.100924.Search in Google Scholar
Chen, J. (2011). Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate) composites. eXPRESS Polym. Lett. 5: 228–237, https://doi.org/10.3144/expresspolymlett.2011.22.Search in Google Scholar
El-Maaty, M., Bassett, D., Olley, R., Hine, P., and Ward, I. (1996). The hot compaction of polypropylene fibres. J. Mater. Sci. 31: 1157–1163, https://doi.org/10.1007/BF00353094.Search in Google Scholar
Gindl, W. and Keckes, J. (2005). All-cellulose nanocomposite. Polymer 46: 10221–10225, https://doi.org/10.1016/j.polymer.2005.08.040.Search in Google Scholar
Heim, H.-P., Rohde, B., and Ries, A. (2012). Influence of the process conditions on the morphology-poperty-relationship of self-reinforced PP-composite. In: Heim, H.-P., Biermann, D., and Maier, H. (Eds.), 1st international conference on thermo-mechanically graded materials. Verlag Wissenschaftliche Scripten, Auerbach, pp. 247–252.Search in Google Scholar
Heim, H.-P., Rohde, B., and Ries, A. (2014). Morphology-property-relationship of thermo-mechanically graded self-reinforced polypropylene composites. In: AIP conference proceedings, Vol. 776, AIP Publishing, pp. 776–779. https://doi.org/10.1063/1.4873890 (Accessed 16.12.2021).Search in Google Scholar
Heim, H.-P., Rohde, B., Ries, A., Faulhaber, K., Saleski, N., Hohmann, C., and Salzmann, C. (2013a). Thermo-mechanical match mould forming of self-reinforced thermoplastic gradient materials. In: Heim, H.-P., Biermann, D., and Homberg, W. (Eds.), Functionally graded materials in industrial mass production, Vol. 2. Verlag Wissenschaftliche Scripten, Auerbach, pp. 97–112.Search in Google Scholar
Heim, H.-P., Tillmann, W., Ries, A., Sievers, N., Rohde, B., and Zielke, R. (2013b). Visualisation of the degrees of compaction of self-reinforced polypropylene composites by means of ultrasonic testing. J. Plast. Technol. 9: 275–294.Search in Google Scholar
Hine, P., Bonner, M., Ward, I., Swolfs, Y., and Verpoest, I. (2017). The influence of the hybridisation configuration on the mechanical properties of hybrid self reinforced polyamide 12/carbon fibre composites. Compos. Appl. Sci. Manuf. 95: 141–151, https://doi.org/10.1016/j.compositesa.2016.12.029.Search in Google Scholar
Hine, P., Bonner, M., Ward, I., Swolfs, Y., Verpoest, I., and Mierzwa, A. (2014). Hybrid carbon fibre/nylon 12 single polymer composites. Compos. Appl. Sci. Manuf. 65: 19–26, https://doi.org/10.1016/j.compositesa.2014.05.020.Search in Google Scholar
Hine, P. and Ward, I. (2006). Hot compaction of woven nylon 6,6 multifilaments. J. Appl. Polym. Sci. 101: 991–997, https://doi.org/10.1002/app.22771.Search in Google Scholar
Hine, P., Ward, I., Jordan, N., Olley, R., and Bassett, D. (2003). The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties. Polymer 44: 1117–1131, https://doi.org/10.1016/S0032-3861(02)00809-1.Search in Google Scholar
Hine, P., Ward, I., Olley, R., and Bassett, D. (1993). The hot compaction of high modulus melt-spun polyethylene fibres. J. Mater. Sci. 28: 316–324, https://doi.org/10.1007/BF00357801.Search in Google Scholar
Ismail, Y., Richardson, M., and Olley, R. (2001). Optimizing impact properties of PP composites by control of spherulitic morphology. J. Appl. Polym. Sci. 79: 1704–1715, https://doi.org/10.1002/1097-4628(20010228)79:9<1704::aid-app200>3.0.co;2-y.10.1002/1097-4628(20010228)79:9<1704::AID-APP200>3.0.CO;2-YSearch in Google Scholar
Izer, A. (2010). Effect of consolidation on the flexural creep behaviour of all-polypropylene composite. eXPRESS Polym. Lett. 4: 210–216, https://doi.org/10.3144/expresspolymlett.2010.27.Search in Google Scholar
Jerpdal, L. and Åkermo, M. (2014). Influence of fibre shrinkage and stretching on the mechanical properties of self-reinforced poly(ethylene terephthalate) composite. J. Reinf. Plast. Compos. 33: 1644–1655, https://doi.org/10.1177/0731684414541018.Search in Google Scholar
Jerpdal, L., Åkermo, M., Ståhlberg, D., and Herzig, A. (2018). Process induced shape distortions of self-reinforced poly(ethylene terephthalate) composites. Compos. Struct. 193: 29–34, https://doi.org/10.1016/j.compstruct.2018.03.038.Search in Google Scholar
Jerpdal, L., Ståhlberg, D., and Åkermo, M. (2016). Influence of fibre stretching on the microstructure of self-reinforced poly(ethylene terephthalate) composite. J. Reinf. Plast. Compos. 35: 1634–1641, https://doi.org/10.1177/0731684416662328.Search in Google Scholar
Karger-Kocsis, J., Wanjale, S., Abraham, T., Bárány, T., and Apostolov, A. (2010). Preparation and characterization of polypropylene homocomposites. Exploiting polymorphism of PP homopolymer. J. Appl. Polym. Sci. 115: 684–691, https://doi.org/10.1002/app.30624.Search in Google Scholar
Kmetty, A., Bárány, T., and Karger-Kocsis, J. (2010). Self-reinforced polymeric materials: a review. Prog. Polym. Sci. 35: 1288–1310, https://doi.org/10.1016/j.progpolymsci.2010.07.002.Search in Google Scholar
Le Bozec, Y., Kaang, S., Hine, P., and Ward, I. (2000). The thermal-expansion behaviour of hot-compacted polypropylene and polyethylene composites. Compos. Sci. Technol. 60: 333–344, https://doi.org/10.1016/S0266-3538(99)00129-3.Search in Google Scholar
Mesquita, F., van Gysel, A., Selezneva, M., Swolfs, Y., Lomov, S., and Gorbatikh, L. (2018). Flexural behaviour of corrugated panels of self-reinforced polypropylene hybridised with carbon fibre: an experimental and modelling study. Composites, Part B, 153: 437–444, https://doi.org/10.1016/j.compositesb.2018.09.017.Search in Google Scholar
Paßmann, D. (2009). Prozessinduzierte Gradierung eigenverstärkter Polypropylen-Faserverbunde beim Heißkompaktieren und Umformen. PPH ZAPOL Dmochowski, Sobczyk Spółka Jawna, Szczecin.Search in Google Scholar
Poulikidou, S., Jerpdal, L., Björklund, A., and Åkermo, M. (2016). Environmental performance of self-reinforced composites in automotive applications — case study on a heavy truck component. Mater. Des. 103: 321–329, https://doi.org/10.1016/j.matdes.2016.04.090.Search in Google Scholar
Rasburn, J., Hine, P., Ward, I., Olley, R., Bassett, D., and Kabeel, M. (1995). The hot compaction of polyethylene terephthalate. J. Mater. Sci. 30: 615–622, https://doi.org/10.1007/BF00356319.Search in Google Scholar
Ries, A. (2015). Thermo-mechanische Gradierung eigenverstärkter Polypropylen-Composite. Kassel University Press, Kassel.Search in Google Scholar
Rohde, B., Wibbeke, A., Heim, H.-P., and Schöppner, V. (2014). The manufacture of hot-compacted layered composite systems made of oriented semifinished PP-films. ISRN Polym. Sci. 2014: 1–9, https://doi.org/10.1155/2014/601741.Search in Google Scholar
Schneider, C., Kazemahvazi, S., Åkermo, M., and Zenkert, D. (2013). Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites. Polym. Test. 32: 221–230, https://doi.org/10.1016/j.polymertesting.2012.11.002.Search in Google Scholar
Schöppner, V., Heim, H.-P., Wibbeke, A., Ries, A., and Rohde, B. (2013). Graded structures in polymers. In: Homberg, W., Biermann, D., and Heim, H.-P. (Eds.), Functionally graded materials in industrial mass production. Fundamentals. Wissenschaftliche Scripten, Auerbach, pp. 11–42.Search in Google Scholar
Selezneva, M., Swolfs, Y., Katalagarianakis, A., Ichikawa, T., Hirano, N., Taketa, I., Karaki, T., Verpoest, I., and Gorbatikh, L. (2018). The brittle-to-ductile transition in tensile and impact behavior of hybrid carbon fibre/self-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 109: 20–30, https://doi.org/10.1016/j.compositesa.2018.02.034.Search in Google Scholar
Swolfs, Y., Cuyper, P., Callens, M., Verpoest, I., and Gorbatikh, L. (2017). Hybridisation of two ductile materials – steel fibre and self-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 100: 48–54, https://doi.org/10.1016/j.compositesa.2017.05.001.Search in Google Scholar
Tang, J., Swolfs, Y., Yang, M., Michielsen, K., Ivens, J., Lomov, S., and Gorbatikh, L. (2018). Discontinuities as a way to influence the failure mechanisms and tensile performance of hybrid carbon fiber/self-reinforced polypropylene composites. Compos. Appl. Sci. Manuf. 107: 354–365, https://doi.org/10.1016/j.compositesa.2018.01.020.Search in Google Scholar
Wang, J., Chen, J., and Dai, P. (2014). Polyethylene naphthalate single-polymer-composites produced by the undercooling melt film stacking method. Compos. Sci. Technol. 91: 50–54, https://doi.org/10.1016/j.compscitech.2013.11.026.Search in Google Scholar
Wang, J., Chen, J., Dai, P., Wang, S., and Chen, D. (2015). Properties of polypropylene single-polymer composites produced by the undercooling melt film stacking method. Compos. Sci. Technol. 107: 82–88, https://doi.org/10.1016/j.compscitech.2014.12.006.Search in Google Scholar
Wright, D., Lautenschlager, E., and Gilbert, J. (1997). Bending and fracture toughness of woven self‐reinforced composite poly(methyl methacrylate). J. Biomed. Mater. Res. 36: 441–453, https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<441::AID-JBM2>3.0.CO;2-E.10.1002/(SICI)1097-4636(19970915)36:4<441::AID-JBM2>3.0.CO;2-ESearch in Google Scholar
Wu, C., Chang, C., Wang, C., and Lin, C. (2012). Optimum consolidation of all-polyester woven fabric-reinforced composite laminates by film stacking. Polym. Compos. 33: 245–252, https://doi.org/10.1002/pc.22146.Search in Google Scholar
Zhang, J. and Peijs, T. (2010). Self-reinforced poly(ethylene terephthalate) composites by hot consolidation of Bi-component PET yarns. Compos. Appl. Sci. Manuf. 41: 964–972, https://doi.org/10.1016/j.compositesa.2010.03.012.Search in Google Scholar
Zhang, J., Reynolds, C.T., and Peijs, T. (2009). All-poly(ethylene terephthalate) composites by film stacking of oriented tapes. Compos. Appl. Sci. Manuf. 40: 1747–1755, https://doi.org/10.1016/j.compositesa.2009.08.008.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blend
- Preparation and application of carbon black-filled rubber composite modified with a multi-functional silane coupling agent
- Non-isothermal viscoelastic melt spinning with stress-induced crystallization: numerical simulation and parametric analysis
- Effect of the amount of oxazoline compatibilizer on the mechanical properties of liquid crystalline polymer/polypropylene blends
- Tensile, rheological and morphological characterizations of multi-walled carbon nanotube/polypropylene composites prepared by microinjection and compression molding
- Modification of self-reinforced composites (SRCs) via film stacking process
- Study of distributive mixing in a journal bearing flow geometry
- Synthesis and characterization of wood flour modified by graphene oxide for reinforcement applications
- Antifouling improvement of a polyacrylonitrile membrane blended with an amphiphilic copolymer
- Exploring the applicability of a simplified fully coupled flow/orientation algorithm developed for polymer composites extrusion deposition additive manufacturing
- Understanding softening of amorphous materials for FFF applications
- News
- PPS News
Articles in the same Issue
- Frontmatter
- Research Articles
- Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blend
- Preparation and application of carbon black-filled rubber composite modified with a multi-functional silane coupling agent
- Non-isothermal viscoelastic melt spinning with stress-induced crystallization: numerical simulation and parametric analysis
- Effect of the amount of oxazoline compatibilizer on the mechanical properties of liquid crystalline polymer/polypropylene blends
- Tensile, rheological and morphological characterizations of multi-walled carbon nanotube/polypropylene composites prepared by microinjection and compression molding
- Modification of self-reinforced composites (SRCs) via film stacking process
- Study of distributive mixing in a journal bearing flow geometry
- Synthesis and characterization of wood flour modified by graphene oxide for reinforcement applications
- Antifouling improvement of a polyacrylonitrile membrane blended with an amphiphilic copolymer
- Exploring the applicability of a simplified fully coupled flow/orientation algorithm developed for polymer composites extrusion deposition additive manufacturing
- Understanding softening of amorphous materials for FFF applications
- News
- PPS News