Home N-fold Darboux transformation and exact solutions for the nonlocal Fokas–Lenells equation on the vanishing and plane wave backgrounds
Article
Licensed
Unlicensed Requires Authentication

N-fold Darboux transformation and exact solutions for the nonlocal Fokas–Lenells equation on the vanishing and plane wave backgrounds

  • Li Li , Yiyan Liu and Fajun Yu EMAIL logo
Published/Copyright: April 25, 2022

Abstract

In this paper, we propose and investigate the reverse-space–time nonlocal nonlinear Fokas–Lenells equation by the idea of Ablowitz and Musslimani. The reverse-space–time Fokas–Lenells equation, associated with a 2 × 2 matrix Lax pair, is the important integrable system, which can be reduced to the nonlocal Fokas–Lenells equation. Based on its Lax pair, we construct nonlocal version of N-fold Darboux transformation (DT) for the Fokas–Lenells equation, and obtain two kinds of soliton solutions from vanishing and plane wave backgrounds. Further some novel one-soliton and two-soliton are derived with the zero and nonzero seed solutions through complex computations, including the bright soliton, kink soliton and breather wave soliton. Moreover, various graphical analyses on the presented solutions are made to reveal the dynamic behaviors, which display the elastic interactions between two solitons and their amplitudes keeping unchanged after the interactions except for the phase shifts. It is clearly shown that these solutions have new properties which differ from ones of the classical Fokas–Lenells equation.

Mathematics Subject Classification: 35Q55; 37K10; 35C08

Corresponding author: Fajun Yu, School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034, China; and College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, PR China, E-mail:

Award Identifier / Grant number: LJKZ01007

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was sponsored by the scientific research funding projects of department education of Liaoning province, China (Grant No. LJKZ01007) and Liaoning Baiqianwan Talents Program (Grant No. 2019921075).

  3. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

[1] M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear equations,” Stud. Appl. Math., vol. 139, no. 1, pp. 7–59, 2017. https://doi.org/10.1111/sapm.12153.Search in Google Scholar

[2] W. P. Zhong, M. Belic, R. H. Xie, et al.., “Three-dimensional spatiotemporal solitary waves in strongly nonlocal media,” Opt. Commun., vol. 283, no. 24, pp. 5213–5217, 2010. https://doi.org/10.1016/j.optcom.2010.08.004.Search in Google Scholar

[3] Q. Wang and J. Z. Li, “Hermite–Gaussian Vector soliton in strong nonlocal media,” Opt. Commun., vol. 333, pp. 253–260, 2014. https://doi.org/10.1016/j.optcom.2014.07.079.Search in Google Scholar

[4] J. L. Ji and Z. N. Zhu, “On a nonlocal modified Korteweg–de Vries equation: integrability, Darboux transformation and soliton solutions,” Commun. Nonlinear Sci. Numer. Simulat., vol. 42, pp. 699–708, 2017. https://doi.org/10.1016/j.cnsns.2016.06.015.Search in Google Scholar

[5] M. Naber, “Time fractional Schrödinger equation,” J. Math. Phys., vol. 45, no. 8, pp. 3339–3352, 2004. https://doi.org/10.1063/1.1769611.Search in Google Scholar

[6] H. Sakaguchi and B. A. Malomed, “Matter-wave solitons in nonlinear optical lattices,” Phys. Rev. E, vol. 72, p. 046610, 2005. https://doi.org/10.1103/PhysRevE.72.046610.Search in Google Scholar PubMed

[7] R. E. Langer, “On the connection formulas and the solutions of the wave equation,” Phys. Rev., vol. 51, no. 8, pp. 669–676, 1937. https://doi.org/10.1103/physrev.51.669.Search in Google Scholar

[8] S. A. Morgan, R. J. Ballagh, and K. Burnett, “Solitary-wave solutions to nonlinear Schrödinger equations,” Phys. Rev. A, vol. 55, no. 6, pp. 4338–4345, 1997. https://doi.org/10.1103/physreva.55.4338.Search in Google Scholar

[9] L. Y. Ma, S. F. Shen, and Z. N. Zhu, “Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation,” J. Math. Phys., vol. 58, p. 103501, 2017. https://doi.org/10.1063/1.5005611.Search in Google Scholar

[10] Z. X. Zhou, “Darboux transformations and global explicit solutions for nonlocal Davey-Stewartson I equation,” Stud. Appl. Math., vol. 141, pp. 186–204, 2018. https://doi.org/10.1111/sapm.12219.Search in Google Scholar

[11] B. L. Guo, L. M. Ling, and Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions,” Phys. Rev. E, vol. 85, p. 026607, 2012. https://doi.org/10.1103/PhysRevE.85.026607.Search in Google Scholar PubMed

[12] A. Biswas and D. Milovic, “Bright and dark solitons of the generalized nonlinear Schrödinger equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 15, no. 6, pp. 1473–1484, 2010. https://doi.org/10.1016/j.cnsns.2009.06.017.Search in Google Scholar

[13] J. C. Nimmo, “A bilinear Bäcklund transformation for the nonlinear Schrödinger equation,” Phys. Lett. A, vol. 99, nos. 6–7, pp. 279–280, 1983. https://doi.org/10.1016/0375-9601(83)90884-8.Search in Google Scholar

[14] H. Q. Zhang, S. S. Yuan, and Y. Wang, “Generalized Darboux transformation and rogue wave solution of the coherently-coupled nonlinear Schrödinger system,” Mod. Phys. Lett. B, vol. 30, p. 1650208, 2016. https://doi.org/10.1142/s0217984916502080.Search in Google Scholar

[15] M. L. Wang, Y. Zhou, and Z. Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,” Phys. Lett. A, vol. 216, nos. 1–5, pp. 67–75, 1996. https://doi.org/10.1016/0375-9601(96)00283-6.Search in Google Scholar

[16] V. A. Arkadiev, A. K. Pogrebkov, and M. C. Polivanov, “Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation,” Phys. D, vol. 36, no. 1, pp. 189–197, 1989. https://doi.org/10.1016/0167-2789(89)90258-3.Search in Google Scholar

[17] F. J. Yu, “Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential,” Chaos, vol. 27, no. 2, p. 023108, 2017. https://doi.org/10.1063/1.4975763.Search in Google Scholar PubMed

[18] M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation,” Phys. Rev. Lett., vol. 110, p. 064105, 2013. https://doi.org/10.1103/PhysRevLett.110.064105.Search in Google Scholar PubMed

[19] L. Li, F. J. Yu, and C. N. Duan, “A generalized nonlocal Gross–Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential,” Appl. Math. Lett., vol. 110, p. 106584, 2020. https://doi.org/10.1016/j.aml.2020.106584.Search in Google Scholar

[20] F. J. Yu and R. Fan, “Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schröodinger equations,” Appl. Math. Lett., vol. 103, p. 106209, 2020. https://doi.org/10.1016/j.aml.2020.106209.Search in Google Scholar

[21] F. J. Yu and S. Feng, “Explicit solution and Darboux transformation for a new discrete integrable soliton hierarchy with 4 Lax pairs,” Math. Methods Appl. Sci., vol. 40, pp. 5515–5525, 2017. https://doi.org/10.1002/mma.4406.Search in Google Scholar

[22] F. J. Yu, C. P. Liu, and L. Li, “Broken and unbroken solutions and dynamic behaviors for the mixed local–nonlocal Schrodinger equation,” Appl. Math. Lett., vol. 117, p. 107075, 2021. https://doi.org/10.1016/j.aml.2021.107075.Search in Google Scholar

[23] L Li, Y Liu and F Yu, “Some reverse space(RS) rational solutions for the nonlocal coupled nonlinear Schrödinger equations on the plane wave backgrounds,” Appl. Math. Lett., vol. 129, pp. 1–7, 2022. https://doi.org/10.1016/j.aml.2022.107976.Search in Google Scholar

[24] F. J. Yu and L. Li, “Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials,” Appl. Math. Lett., vol. 91, pp. 41–47, 2019. https://doi.org/10.1016/j.aml.2018.11.026.Search in Google Scholar

[25] F. J. Yu, “Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross-Pitaevskii equation with PT-symmetric external potentials,” Appl. Math. Lett., vol. 92, pp. 108–114, 2019. https://doi.org/10.1016/j.aml.2019.01.010.Search in Google Scholar

[26] A. S. Fokas, “On a class of physically important integrable equations,” Physica D, vol. 87, pp. 145–150, 1995. https://doi.org/10.1016/0167-2789(95)00133-o.Search in Google Scholar

[27] Y. A. Matsuno, “A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: I. Bright soliton solutions,” J. Phys. Math. Theor., vol. 45, p. 235202, 2012. https://doi.org/10.1088/1751-8113/45/23/235202.Search in Google Scholar

[28] J. He, S. Xu, and K. Porsezian, “Rogue waves of the Fokas-Lenells equation,” J. Phys. Soc. Jpn., vol. 81, p. 124007, 2012. https://doi.org/10.1143/jpsj.81.124007.Search in Google Scholar

[29] S. Xu, J. He, Y. Cheng, and K. Porseiza, “The n-order rogue waves of Fokas–Lenells equation,” Math. Methods Appl. Sci., vol. 38, pp. 1106–1126, 2015. https://doi.org/10.1002/mma.3133.Search in Google Scholar

[30] Q. Zhang, Y. Zhang, and R. Ye, “Exact solutions of nonlocal Fokas–Lenells equation,” Appl. Math. Lett., vol. 98, p. 336, 2019. https://doi.org/10.1016/j.aml.2019.05.015.Search in Google Scholar

[31] L. M. Ling, B. F. Feng, and Z. N. Zhu, “General soliton solutions to a coupled Fokas-Lenells equation,” Nonlinear Anal. R. World Appl., vol. 40, pp. 185–124, 2018. https://doi.org/10.1016/j.nonrwa.2017.08.013.Search in Google Scholar

[32] C. N. Duan and F. J. Yu, “N-fold Darboux transformation for the nonlocal nonlinear schrödinger (NNLS) equation with the self-induced PT-symmetric potential,” J. Appl. Math. Phys., vol. 6, pp. 888–900, 2018. https://doi.org/10.4236/jamp.2018.64076.Search in Google Scholar

[33] L. Xu, D. S. Wang, X. Y. Wen, and Y. L. Jiang, “Exotic localised vector waves in a two-component nonlinear wave system,” J. Nonlinear Sci., vol. 30, pp. 537–564, 2020. https://doi.org/10.1007/s00332-019-09581-0.Search in Google Scholar

[34] D. S. Wang, D. J. Zhang, and J. K. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations,” J. Math. Phys., vol. 51, p. 023510, 2010. https://doi.org/10.1063/1.3290736.Search in Google Scholar

[35] D. S. Wang, B. L. Guo, and X. L. Wang, “Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions,” J. Differ. Equ., vol. 266, pp. 5209–5253, 2019. https://doi.org/10.1016/j.jde.2018.10.053.Search in Google Scholar

Received: 2021-06-01
Revised: 2021-12-20
Accepted: 2022-04-07
Published Online: 2022-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. One-dimensional optimal system and similarity transformations for the 3 + 1 Kudryashov–Sinelshchikov equation
  4. Hopf bifurcations in a network of FitzHugh–Nagumo biological neurons
  5. Gravity modulation effect on weakly nonlinear thermal convection in a fluid layer bounded by rigid boundaries
  6. A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation
  7. Chebyshev spectral method for solving a class of local and nonlocal elliptic boundary value problems
  8. Adaptive extragradient methods for solving variational inequalities in real Hilbert spaces
  9. Elastic trend filtering
  10. A new approach to representations of homothetic motions in Lorentz space
  11. Numerical simulation of variable-order fractional differential equation of nonlinear Lane–Emden type appearing in astrophysics
  12. Stability analysis and numerical simulations of the fractional COVID-19 pandemic model
  13. Numerical solutions of the Bagley–Torvik equation by using generalized functions with fractional powers of Laguerre polynomials
  14. N-fold Darboux transformation and exact solutions for the nonlocal Fokas–Lenells equation on the vanishing and plane wave backgrounds
  15. Closed form soliton solutions to the space-time fractional foam drainage equation and coupled mKdV evolution equations
  16. Master-slave synchronization in the Duffing-van der Pol and Φ6 Duffing oscillators
  17. Singularity analysis and analytic solutions for the Benney–Gjevik equations
  18. Trajectory controllability of nonlinear fractional Langevin systems
  19. Similarity transformations for modified shallow water equations with density dependence on the average temperature
  20. Non-equidistant partition predictor–corrector method for fractional differential equations with exponential memory
  21. Dynamical analysis of fractional-order of IVGTT glucose–insulin interaction
  22. Dynamic response of Mathieu–Duffing oscillator with Caputo derivative
  23. Non-Newtonian fluid flow having fluid–particle interaction through a porous zone in a channel with permeable walls
  24. A class of computationally efficient Newton-like methods with frozen inverse operator for nonlinear systems
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0224/html
Scroll to top button