Home Slippage phenomenon in hydromagnetic peristaltic rheology with hall current and viscous dissipation
Article
Licensed
Unlicensed Requires Authentication

Slippage phenomenon in hydromagnetic peristaltic rheology with hall current and viscous dissipation

  • Aamir Ali EMAIL logo , Sana Mumraiz , Hafiz Junaid Anjum , Saleem Asghar and Muhammad Awais
Published/Copyright: June 15, 2021

Abstract

The current research explores the slippage phenomenon in hydromagnetic peristaltic activity of a non-Newtonian fluid with porous media in an asymmetric channel. The analysis is performed under the influence of thermal radiation, Hall current, Joule heating and viscous dissipation. The problem is formulated with the assumption of small Reynolds number and large wavelength. Analytical solutions are achieved through perturbation technique and the impacts of involved influential parameters are examined through graphs. It is observed that the pressure gradient rises with fourth grade fluid parameter and decreases with increasing phase difference. The pressure rise increases in pumping regime and decreases in co-pumping regime for increasing magnetic field parameter, whereas it has opposite effects for hall parameter. It is also noted that the velocity drops in the middle of the channel, while it increases near the boundaries for growing slip parameter and magnetic field parameters and it has the opposite behavior for hall and permeability parameters. The slip parameter increases the temperature of the fluid and decreases the concentration. Also, in trapping phenomena, the bolus size reduces by enlarging Deborah parameter. The present research has profound use in biomedical science, polymer technology and artificial heart polishing.


Corresponding author: Aamir Ali, Department of Mathematics, COMSATS University Islamabad, Attock Campus, Kamra Road, Attock 43600, Pakistan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix
ψ 0 = C 1 e y α α + C 2 e y α α + C 3 + y C 4 ,
θ 0 = 3 Br e 2 y α 4 3 + 4 Rd α 2 C 2 2 1 + β C 1 2 e 4 y α 1 + β + 8 C 2 e y α α C 4 + β + C 4 β 8 C 1 e 3 y α α C 4 + β + C 4 β 2 e 2 y α y 2 α 2 C 1 C 2 1 + β + α C 4 2 + 1 + C 4 2 β + C 5 + y C 6 ,
ϕ 0 = 3 BrScSr e 2 y α 4 3 + 4 Rd α 2 C 2 2 1 + β + C 1 2 e 4 y α 1 + β 8 C 2 e y α α C 4 + β + C 4 β + 8 C 1 e 3 y α α C 4 + β + C 4 β + 2 e 2 y α y 2 α 2 C 1 C 2 1 + β + α C 4 2 + 1 + C 4 2 β + C 7 + y C 8 ,
ψ 1 = e 3 y α 4 α C 2 3 C 1 3 e 6 y α 2 e 4 y α 2 C 9 + 3 C 1 2 C 2 5 + 2 y α + 2 e 2 y α 2 C 10 + 3 C 1 C 2 2 5 + 2 y α + C 11 + y C 12 ,
θ 1 = Br e 4 y α 32 3 + 4 Rd α 2 16 C 2 3 1 + C 4 e y α α β + 16 C 1 3 1 + C 4 e 7 y α α β + 96 e 3 y α 2 C 10 1 + C 4 + C 2 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 y α α β + 96 e 5 y α 2 C 9 1 + C 4 + C 1 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 y α α β + 96 e 4 y α y 2 α C 1 C 10 α β + 9 C 1 2 C 2 3 α β + C 2 C 9 α β + C 12 1 + C 4 α β + 12 C 1 e 6 y α 4 C 9 α + β + C 1 2 C 2 × 25 α + 12 y α 3 / 2 33 β + 12 y α β 12 C 2 e 2 y α 4 C 10 α + β + C 1 C 2 2 25 α + 12 y α 3 / 2 + 33 β + 12 y α β + 3 C 2 4 5 α + 3 β + 3 C 1 4 e 8 y α 5 α + 3 β + C 13 + y C 14 ,
ϕ 1 = BrScSr e 4 y α 32 3 + 4 Rd α 2 16 C 2 3 1 + C 4 e y α α β + 16 C 1 3 1 + C 4 e 7 y α α β + 96 e 3 y α 2 C 10 1 + C 4 + C 2 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 y α α β + 96 e 5 y α 2 C 9 1 + C 4 + C 1 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 y α α β + 96 e 4 y α y 2 α C 1 C 10 α β + 9 C 1 2 C 2 3 α β + C 2 C 9 α β + C 12 1 + C 4 α β + 12 C 1 e 6 y α 4 C 9 α + β + C 1 2 C 2 × 25 α + 12 y α 3 / 2 33 β + 12 y α β 12 C 2 e 2 y α 4 C 10 α + β + C 1 C 2 2 25 α + 12 y α 3 / 2 + 33 β + 12 y α β + 3 C 2 4 5 α + 3 β + 3 C 1 4 e 8 y α 5 α + 3 β + C 15 + y C 16 ,

where the values of the constants are:

C 1 = F 0 + h 1 h 2 α e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 ,
C 2 = e h 1 + h 2 α F 0 + h 1 h 2 α e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 ,
C 3 = h 1 + h 2 e h 1 α 2 + F 0 α + α β 1 + e h 2 α 2 + F 0 α α β 1 2 e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 ,
C 4 = e h 1 α 2 + F 0 α + α β 1 + e h 2 α 2 + F 0 α α β 1 e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 ,
C 5 = h 2 β 2 h 1 h 2 + 2 β 2 A 1 4 3 + 4 Rd α 2 A 3 3 + 4 Rd α h 1 + β 2 h 1 h 2 + 2 β 2 1 A 2 4 3 + 4 Rd α 2 + A 4 3 + 4 Rd α ,

where

A 1 = 3 Br e 2 h 1 α C 2 2 1 + β 4 C 2 e h 1 α α 2 β + 2 C 4 1 + β + C 1 e h 1 α h 1 2 α 1 + β + e 2 h 1 α C 1 2 e 2 h 1 α 1 + β + 8 C 1 e h 1 α α C 4 + β + C 4 β + 2 h 1 2 α 2 β + 2 C 4 β + C 4 2 1 + β , A 2 = 3 Br e 2 h 2 α C 2 2 1 + β 4 C 2 e h 2 α α 2 β + 2 C 4 1 + β + C 1 e h 2 α h 2 2 α 1 + β + e 2 h 2 α C 1 2 e 2 h 2 α 1 + β + 8 C 1 e h 2 α α C 4 + β + C 4 β + 2 h 2 2 α 2 β + 2 C 4 β + C 4 2 1 + β , A 3 = 3 Br 2 C 1 C 2 h 1 + C 4 2 h 1 α 2 C 1 C 2 h 1 β + h 1 α β + 2 C 4 h 1 α β + C 4 2 h 1 α β C 2 2 e 2 h 1 α 1 + β 2 α + C 1 2 e 2 h 1 α 1 + β 2 α + 2 C 2 e h 1 α C 4 + β + C 4 β + 2 C 1 e h 1 α C 4 + β + C 4 β β 2 , A 4 = 3 Br 2 C 1 C 2 h 2 + C 4 2 h 2 α 2 C 1 C 2 h 2 β + h 2 α β + 2 C 4 h 2 α β + C 4 2 h 2 α β C 2 2 e 2 h 2 α 1 + β 2 α + C 1 2 e 2 h 2 α 1 + β 2 α + 2 C 2 e h 2 α C 4 + β + C 4 β + 2 C 1 e h 2 α C 4 + β + C 4 β β 2 ,
C 6 = e 2 h 1 + h 2 α 4 3 + 4 Rd α 2 h 1 h 2 + 2 β 2 4 e 2 h 1 + h 2 α 3 + 4 Rd α 2 3 Br 2 e 2 h 1 + h 2 α h 1 + h 2 α 2 × C 4 2 + 1 + C 4 2 β h 1 h 2 + 2 β 2 8 C 1 e 2 h 1 + h 2 α α C 4 + β + C 4 β e h 2 α 1 + α β 2 + e h 1 α 1 + α β 2 + C 2 2 1 + β e 2 h 2 α 1 + 2 α β 2 + e 2 h 1 α 1 + 2 α β 2 C 1 2 1 + β × e 2 h 1 + 2 h 2 α 1 + 2 α β 2 + e 2 2 h 1 + h 2 α 1 + 2 α β 2 4 C 2 C 1 e 2 h 1 + h 2 α h 1 + h 2 α 1 + β h 1 h 2 + 2 β 2 + 2 α β e h 1 + 2 h 2 α 1 + α β 2 + e 2 h 1 + h 2 α 1 + α β 2 + 2 C 4 α 1 + β + e 2 h 1 + h 2 α 1 + α β 2 ,
C 7 = h 2 β 3 h 1 h 2 + 2 β 2 A 5 4 3 + 4 Rd α 2 + A 7 3 + 4 Rd α h 1 + β 3 h 1 h 2 + 2 β 2 1 + A 6 4 3 + 4 Rd α 2 A 8 3 + 4 Rd α ,

where

A 5 = 3 Br e 2 h 1 α ScSr C 2 2 1 + β 4 C 2 e h 1 α α 2 β + 2 C 4 1 + β + C 1 e h 1 α h 1 2 α 1 + β + e 2 h 1 α C 1 2 e 2 h 1 α 1 + β + 8 C 1 e h 1 α α C 4 + β + C 4 β + 2 h 1 2 α 2 β + 2 C 4 β + C 4 2 1 + β ,
A 6 = 3 Br e 2 h 2 α ScSr C 2 2 1 + β 4 C 2 e h 2 α α 2 β + 2 C 4 1 + β + C 1 e h 2 α h 2 2 α 1 + β + e 2 h 2 α C 1 2 e 2 h 2 α 1 + β + 8 C 1 e h 2 α α C 4 + β + C 4 β + 2 h 2 2 α 2 β + 2 C 4 β + C 4 2 1 + β ,
A 7 = 3 BrScSr 2 C 1 C 2 h 1 + C 4 2 h 1 α 2 C 1 C 2 h 1 β + h 1 α β + 2 C 4 h 1 α β + C 4 2 h 1 α β C 2 2 e 2 h 1 α 1 + β 2 α + C 1 2 e 2 h 1 α 1 + β 2 α + 2 C 2 e h 1 α C 4 + β + C 4 β + 2 C 1 e h 1 α C 4 + β + C 4 β β 3 ,
A 8 = 3 BrScSr 2 C 1 C 2 h 2 + C 4 2 h 2 α 2 C 1 C 2 h 2 β + h 2 α β + 2 C 4 h 2 α β + C 4 2 h 2 α β C 2 2 e 2 h 2 α 1 + β 2 α + C 1 2 e 2 h 2 α 1 + β 2 α + 2 C 2 e h 2 α C 4 + β + C 4 β + 2 C 1 e h 2 α C 4 + β + C 4 β β 3 ,
C 8 = e 2 h 1 + h 2 α 4 3 + 4 Rd α 2 h 1 h 2 + 2 β 3 4 e 2 h 1 + h 2 α 3 + 4 Rd α 2 + 3 BrScSr 2 e 2 h 1 + h 2 α h 1 + h 2 α 2 × C 4 2 + 1 + C 4 2 β h 1 h 2 + 2 β 3 8 C 1 e 2 h 1 + h 2 α α C 4 + β + C 4 β e h 2 α 1 + α β 3 + e h 1 α 1 + α β 3 + C 2 2 1 + β e 2 h 2 α 1 + 2 α β 3 + e 2 h 1 α 1 + 2 α β 3 C 1 2 1 + β e 2 h 1 + 2 h 2 α 1 + 2 α β 3 + e 2 2 h 1 + h 2 α 1 + 2 α β 3 4 C 2 C 1 e 2 h 1 + h 2 α × h 1 + h 2 α 1 + β h 1 h 2 + 2 β 3 + 2 α β e h 1 + 2 h 2 α 1 + α β 3 + e 2 h 1 + h 2 α 1 + α β 3 + 2 C 4 α 1 + β e h 1 + 2 h 2 α 1 + α β 3 + e 2 h 1 + h 2 α 1 + α β 3 .
C 9 = e 4 h 1 + h 2 α 4 e h 1 α 1 + α β 1 + e h 2 α 1 + α β 1 e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 × 4 e 4 h 1 + 5 h 2 α F 1 α 1 + α β 1 4 e 5 h 1 + 4 h 2 α F 1 α 1 + α β 1 12 e 5 h 1 + 3 h 2 α × + e 3 h 1 + 5 h 2 α + e 4 h 1 + h 2 α 2 + h 1 h 2 2 α 1 + α β 1 2 + C 2 3 2 e 5 h 1 + h 2 α × 2 e h 1 + 5 h 2 α + e 2 h 1 + 2 h 2 α 2 + α 3 h 1 + 3 h 2 2 1 + h 1 h 2 α β 1 + h 1 h 2 α β 1 2 + e 2 2 h 1 + h 2 α 2 + α 3 h 1 3 h 2 + 2 1 h 1 h 2 α β 1 h 1 h 2 α β 1 2 + 6 C 1 2 C 2 4 e 5 h 1 + h 2 α 4 + h 1 + h 2 α + e 2 2 h 1 + 3 h 2 α 8 + α 10 β 1 h 1 1 + α β 1 × 3 2 h 2 α 5 α β 1 + 2 h 2 α β 1 + h 2 1 + α β 1 7 2 h 2 α 5 α β 1 + 2 h 2 α β 1 + e 2 3 h 1 + 2 h 2 α 8 + α 10 β 1 + 2 α h 1 + h 1 α β 1 2 + h 2 3 + 8 α β 1 + 5 α β 1 2 h 1 1 + α β 1 7 + 5 α β 1 + 2 h 2 α + α β 1 + 2 C 1 3 e 6 h 1 + h 2 α 4 cosh h 1 h 2 α + 4 1 + h 1 h 2 α β 1 cosh 2 h 1 h 2 α + α 3 h 1 3 h 2 2 β 1 + h 1 h 2 α β 1 2 sinh 2 h 1 h 2 α
C 10 = e 2 h 1 + h 2 α 4 e h 1 α 1 + α β 1 + e h 2 α 1 + α β 1 e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 × 4 e 3 h 1 + h 2 α F 1 α e h 1 α 1 + α β 1 + e h 2 α 1 + α β 1 + 12 C 1 2 C 2 e 5 h 1 + 3 h 2 α + e 3 h 1 + 5 h 2 α + e 4 h 1 + h 2 α 2 + h 1 h 2 2 α 1 + α β 1 2 + C 2 3 4 e 3 h 1 + h 2 α 4 e h 1 + 3 h 2 α + e 4 h 2 α 4 + α 3 h 1 3 h 2 2 β 1 + 4 h 1 + h 2 α β 1 + h 1 h 2 α β 1 2 + e 4 h 1 α 4 + α 3 h 1 + 3 h 2 + 2 β 1 + 4 h 1 + h 2 α β 1 + h 1 + h 2 α β 1 2 + 6 C 1 C 2 2 4 e 3 h 1 + h 2 α 4 + h 1 + h 2 α + e 2 h 1 + 2 h 2 α × 8 + α 3 h 2 + h 1 7 + 2 h 1 + h 2 α + 10 β 1 + 4 3 h 1 2 h 2 + h 1 h 1 h 2 α α β 1 h 1 h 2 5 + 2 h 1 α α β 1 2 + e 2 2 h 1 + h 2 α 8 + α 10 β 1 + h 1 1 + α β 1 × 3 + 5 α β 1 + 2 h 2 α + α β 1 h 2 1 + α β 1 7 + 5 α β 1 + 2 h 2 α + α β 1 + 2 C 1 3 e 5 h 1 + h 2 α 2 1 + h 1 h 2 α β 1 cosh h 1 h 2 α + 2 cosh 2 h 1 h 2 α + α 3 h 1 + 3 h 2 2 β 1 + h 1 h 2 α β 1 2 sinh h 1 h 2 α
C 11 = e 3 h 1 + h 2 α 2 α e h 1 α 1 + α β 1 + e h 2 α 1 + α β 1 e h 1 α 2 h 1 h 2 α 1 + α β 1 + e h 2 α 2 + h 1 h 2 α 1 + α β 1 × C 2 3 e 2 h 1 α e 2 h 2 α e h 1 + 2 h 2 α 1 + 3 h 1 α h 1 α β 1 + e 3 h 2 α 1 h 2 α + h 2 α β 1 e 2 h 1 + h 2 α 1 + 3 h 2 α + h 2 α β 1 + e 3 h 1 α 1 + h 1 α + h 1 α β 1 + 6 C 1 2 C 2 e 3 h 1 + 2 h 2 α 1 h 1 α + α β 1 e 3 2 h 1 + h 2 α 1 + h 2 α + α β 1 + e 5 h 1 + 4 h 2 α 1 + α 2 h 2 + h 1 1 + 2 h 1 h 2 α 1 + α β 1 + e 4 h 1 + 5 h 2 α 1 + α h 2 1 + 2 h 2 α 1 + α β 1 + 2 h 1 1 h 2 α + h 2 α β 1 + 6 C 1 C 2 2 e 2 h 1 + 5 h 2 α 1 + h 2 α α β 1 + e 5 h 1 + 2 h 2 α 1 + h 1 α + α β 1 + e 3 h 1 + 4 h 2 α 1 + α 2 h 2 h 1 1 + 2 h 1 h 2 α 1 + α β 1 + e 4 h 1 + 3 h 2 α 1 + α h 2 1 + 2 h 2 α 1 + α β 1 2 h 1 1 + h 2 α + h 2 α β 1 + 2 e 4 h 1 + h 2 α F 1 h 1 h 2 α 3 / 2 2 α β 1 cosh h 1 h 2 α + 1 + α β 1 2 sinh h 1 h 2 α + C 1 3 e 3 h 1 + 8 h 2 α 1 h 1 α + h 1 α β 1
+ e 6 h 1 + 5 h 2 α cosh h 1 h 2 α 1 + h 1 α h 1 α β 1 8 h 2 α sinh h 1 h 2 α + sinh h 1 h 2 α 3 + 5 h 1 α + 3 h 1 α β 1 4 1 h 2 α + h 2 α β 1 sinh h 1 h 2 α
C 12 = e 7 2 h 1 + h 2 α 4 α h 1 + h 2 α cosh 1 2 h 1 h 2 α + 2 + h 1 + h 2 α β 1 sinh 1 2 h 1 h 2 α × C 2 3 e h 1 α + e h 2 α 3 e h 1 α + e h 2 α + 6 C 1 C 2 2 e 2 2 h 1 + h 2 α + e 2 h 1 + 2 h 2 α + e 3 h 1 + h 2 α h 1 h 2 α + 6 C 1 2 C 2 e 5 h 1 + 3 h 2 α e 3 h 1 + 5 h 2 α 2 e 4 h 1 + h 2 α h 1 h 2 α + e 3 h 1 + h 2 α C 1 3 e h 1 α e h 2 α 3 e h 1 α + e h 2 α + 2 F 1 α e h 2 α 1 + α β 1 e h 1 α 1 + α β 1
C 13 = 1 h 1 h 2 + 2 β 2 Br h 2 β 2 32 3 + 4 Rd α 16 C 2 3 1 + C 4 e 3 h 1 α β α + 16 C 1 3 1 + C 4 e 3 h 1 α β α + 96 e h 1 α 2 C 10 1 + C 4 + C 2 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 h 1 α β α + 3 C 2 4 e 4 h 1 α 5 α + 3 β α + 96 e h 1 α 2 C 1 C 12 2 C 9 1 + C 4 + 3 C 1 2 C 2 1 + C 4 7 + 2 h 1 α β α + 3 C 1 4 e 4 h 1 α 5 α + 3 β α + 12 C 1 e 2 h 1 α 4 C 9 α + β + C 1 2 C 2 25 α + 12 h 1 α 3 / 2 33 β + 12 h 1 α β α 12 C 2 e 2 h 1 α 4 C 10 α + β + C 1 C 2 2 25 α + 12 h 1 α 3 / 2 + 33 β + 12 h 1 α β α + 96 h 1 2 C 1 C 10 α β + 9 C 1 2 C 2 2 α β + C 2 C 9 α β + C 12 1 + C 4 α β 3 Br h 2 β 2 e 4 h 1 α 8 3 + 4 Rd α 3 / 2 C 2 4 5 α + 3 β + 24 C 1 C 2 2 e 3 h 1 α α 6 C 1 e h 1 α h 1 α β + 1 + C 4 × 5 + 2 h 1 α β 2 C 2 3 e h 1 α 2 1 + C 4 α β + C 1 e h 1 α 19 α + 12 h 1 α 3 / 2 + 27 β + 12 h 1 α β + e 3 h 1 α 4 C 1 3 1 + C 4 e 4 h 1 α α β + 16 1 + C 4 α C 10 + C 9 e 2 h 1 α + C 12 e h 1 α h 1 α β C 1 4 e 5 h 1 α 5 α + 3 β + 8 C 1 e h 1 α C 9 e 2 h 1 α α + β + 2 α C 10 h 1 α β + C 12 e h 1 α β 2 C 2 e 2 h 1 α 4 C 10 α + β + e h 1 α 12 C 1 2 1 + C 4 e 2 h 1 α 5 + 2 h 1 α α β 8 α C 9 e h 1 α h 1 α β + C 12 β + C 1 3 e 3 h 1 α 19 α + 12 h 1 α 3 / 2 27 β + 12 h 1 α β β 2 + Br h 1 + β 2 32 3 + 4 Rd α 16 C 2 3 1 + C 4 e 3 h 2 α β α + 16 C 1 3 1 + C 4 e 3 h 2 α β α + 96 e h 2 α 2 C 10 1 + C 4 + C 2 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 h 2 α β α + 3 C 2 4 e 4 h 2 α 5 α + 3 β α + 96 e h 2 α 2 C 1 C 12 2 C 9 1 + C 4 + 3 C 1 2 C 2 1 + C 4 7 + 2 h 2 α β α + 3 C 1 4 e 4 h 2 α 5 α + 3 β α
+ 12 C 1 e 2 h 2 α 4 C 9 α + β + C 1 2 C 2 25 α + 12 h 2 α 3 / 2 33 β + 12 h 2 α β α 12 C 2 e 2 h 2 α 4 C 10 α + β + C 1 C 2 2 25 α + 12 h 2 α 3 / 2 + 33 β + 12 h 2 α β α + 96 h 2 2 C 1 C 10 α β + 9 C 1 2 C 2 2 α β + C 2 C 9 α β + C 12 1 + C 4 α β + 3 Br h 2 β 2 e 4 h 2 α 8 3 + 4 Rd α 3 / 2 C 2 4 5 α + 3 β + 24 C 1 C 2 2 e 3 h 2 α α 6 C 1 e h 2 α h 2 α β + 1 + C 4 5 + 2 h 2 α β 2 C 2 3 e h 2 α 2 1 + C 4 α β + C 1 e h 2 α 19 α + 12 h 2 α 3 / 2 + 27 β + 12 h 2 α β + e 3 h 2 α 4 C 1 3 1 + C 4 e 4 h 2 α α β + 16 1 + C 4 α C 10 + C 9 e 2 h 2 α + C 12 e h 2 α h 2 α β C 1 4 e 5 h 2 α 5 α + 3 β + 8 C 1 e h 2 α C 9 e 2 h 2 α α + β + 2 α C 10 h 2 α β + C 12 e h 2 α β 2 C 2 e 2 h 2 α 4 C 10 α + β + e h 2 α 12 C 1 2 1 + C 4 e 2 h 2 α 5 + 2 h 1 α α β 8 α × C 9 e h 2 α h 2 α β + C 12 β + C 1 3 e 3 h 2 α 19 α + 12 h 2 α 3 / 2 27 β + 12 h 2 α β β 2
C 14 = Br e 4 h 1 + h 2 α 32 3 + 4 Rd α 2 h 1 h 2 + 2 β 2 16 C 1 3 1 + C 4 e 4 h 1 + h 2 α α β e 3 h 1 α 1 + 3 α β 2 + e 3 h 2 α 1 + 3 α β 2 3 C 2 4 5 α + 3 β e 4 h 1 α 1 + 4 α β 2 + e 4 h 2 α 1 + 4 α β 2 + 3 C 1 4 5 α + 3 β e 4 h 1 + 2 h 2 α 1 + 4 α β 2 + e 4 2 h 1 + h 2 α 1 + 4 α β 2 48 C 1 e 4 h 1 + h 2 α × 2 C 10 h 1 + h 2 α α β h 1 h 2 + 2 β 2 + 4 C 12 α β e h 1 α 1 + α β 2 + e h 2 α 1 + α β 2 + C 9 α + β e 2 h 1 α 1 + 2 α β 2 + e 2 h 2 α 1 + 2 α β 2 96 1 + C 4 α β 2 C 10 e 3 h 1 + h 2 α × e h 1 α 1 + α β 2 + e h 2 α 1 + α β 2 + e 4 h 1 + h 2 α C 12 h 1 + h 2 α 3 / 2 h 1 h 2 + 2 β 2 + 2 C 9 e h 1 α 1 + α β 2 + e h 2 α 1 + α β 2 288 C 1 C 2 2 α 3 C 1 e 4 h 1 + h 2 α h 1 + h 2 × α α β h 1 h 2 + 2 β 2 + 1 + C 4 e 3 h 1 + h 2 α β e h 1 α 7 + 5 α β 2 + 2 h 2 α + α β 2 + e h 2 α 7 + 5 α β 2 2 h 2 α + α β 2 + 12 C 2 8 C 9 e 4 h 1 + h 2 α h 1 2 α 2 h 2 2 h 1 2 16 C 12 α β e 3 h 1 + 4 h 2 α e 4 h 1 + 3 h 2 α + 8 C 9 e 4 h 1 + h 2 α α β h 1 2 h 2 2 16 C 9 e 4 h 1 + h 2 α α 2 β h 1 + h 2 + 16 C 12 α β β 2 e 3 h 1 + 4 h 2 α e 4 h 1 + 3 h 2 α + 16 C 9 α β β 2 e 4 h 1 + h 2 α h 1 + h 2 + 4 C 10 α + β e 2 h 1 + 2 h 2 α 1 + 2 α β 2 + e 2 2 h 1 + h 2 α × 1 + 2 α β 2 + 24 C 1 2 1 + C 4 e 4 h 1 + h 2 α α β e h 1 α 7 5 α β 2 + 2 h 1 α + α β 2 + e h 2 α 7 5 α β 2 2 h 2 α α β 2 + C 1 3 e 2 3 h 1 + 2 h 2 α 33 β + 2 α 3 / 2 6 h 1 19 β 2 + 6 α β 2 h 1 9 β 2 + 24 h 1 α 2 β 2 + α 25 + 24 h 1 β β 2 + e 2 2 h 1 + 3 h 2 α 33 β + 24 h 2 α 2 β 2 6 α β 2 h 2 + 9 β 2 2 α 3 / 2 6 h 2 + 19 β 2 + α 25 + 24 h 1 β β 2 + 4 C 2 3 4 1 + C 4 α β × e h 1 + 4 h 2 α 1 + 3 α β 2 + e 4 h 1 + h 2 α 1 + 3 α β 2 + 3 C 1 e 2 h 1 + h 2 α e 2 h 2 α 33 β + 24 h 1 α 2 β 2 + 6 α β 2 h 1 + 9 β 2 + α 3 / 2 12 h 1 + 38 β 2 + α 25 + 24 h 1 β β 2 + e 2 h 1 α 33 β + 24 h 2 α 2 β 2 + 6 α β 2 h 2 + 9 β 2 + 2 α 3 / 2 6 h 2 + 19 β 2 + α 25 + 24 h 2 β β 2
C 15 = 1 h 1 h 2 + 2 β 3 BrScSr h 2 β 3 32 3 + 4 Rd α 16 C 2 3 1 + C 4 e 3 h 1 α β α + 16 C 1 3 1 + C 4 e 3 h 1 α β α + 96 e h 1 α 2 C 10 1 + C 4 + C 2 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 h 1 α β α + 3 C 2 4 e 4 h 1 α 5 α + 3 β α + 96 e h 1 α 2 C 1 C 12 2 C 9 1 + C 4 + 3 C 1 2 C 2 1 + C 4 7 + 2 h 1 α β α + 3 C 1 4 e 4 h 1 α 5 α + 3 β α + 12 C 1 e 2 h 1 α 4 C 9 α + β + C 1 2 C 2 25 α + 12 h 1 α 3 / 2 33 β + 12 h 1 α β α 12 C 2 e 2 h 1 α 4 C 10 α + β + C 1 C 2 2 25 α + 12 h 1 α 3 / 2 + 33 β + 12 h 1 α β α + 96 h 1 2 C 1 C 10 α β + 9 C 1 2 C 2 2 α β + C 2 C 9 α β + C 12 1 + C 4 α β + 3 BrScSr h 2 β 3 e 4 h 1 α 8 3 + 4 Rd α 3 / 2 C 2 4 5 α + 3 β + 24 C 1 C 2 2 e 3 h 1 α α 6 C 1 e h 1 α h 1 α β + 1 + C 4 5 + 2 h 1 α β 2 C 2 3 e h 1 α 2 1 + C 4 α β + C 1 e h 1 α 19 α + 12 h 1 α 3 / 2 + 27 β + 12 h 1 α β + e 3 h 1 α 4 C 1 3 1 + C 4 e 4 h 1 α α β + 16 1 + C 4 α C 10 + C 9 e 2 h 1 α + C 12 e h 1 α h 1 α β C 1 4 e 5 h 1 α 5 α + 3 β + 8 C 1 e h 1 α C 9 e 2 h 1 α α + β + 2 α C 10 h 1 α β + C 12 e h 1 α β 2 C 2 e 2 h 1 α 4 C 10 α + β + e h 1 α 12 C 1 2 1 + C 4 e 2 h 1 α 5 + 2 h 1 α α β 8 α C 9 e h 1 α h 1 α β + C 12 β + C 1 3 e 3 h 1 α 19 α + 12 h 1 α 3 / 2 27 β + 12 h 1 α β β 3 BrScSr h 1 + β 3 32 3 + 4 Rd α 16 C 2 3 1 + C 4 e 3 h 2 α β α + 16 C 1 3 1 + C 4 e 3 h 2 α β α + 96 e h 2 α 2 C 10 1 + C 4 + C 2 2 C 12 + 3 C 1 C 2 1 + C 4 7 + 2 h 2 α β α + 3 C 2 4 e 4 h 2 α 5 α + 3 β α + 96 e h 2 α 2 C 1 C 12 2 C 9 1 + C 4 + 3 C 1 2 C 2 1 + C 4 7 + 2 h 2 α β α + 3 C 1 4 e 4 h 2 α 5 α + 3 β α
+ 12 C 1 e 2 h 2 α 4 C 9 α + β + C 1 2 C 2 25 α + 12 h 2 α 3 / 2 33 β + 12 h 2 α β α 12 C 2 e 2 h 2 α 4 C 10 α + β + C 1 C 2 2 25 α + 12 h 2 α 3 / 2 + 33 β + 12 h 2 α β α + 96 h 2 2 C 1 C 10 α β + 9 C 1 2 C 2 2 α β + C 2 C 9 α β + C 12 1 + C 4 α β 3 BrScSr h 2 β 3 e 4 h 2 α 8 3 + 4 Rd α 3 / 2 C 2 4 5 α + 3 β + 24 C 1 C 2 2 e 3 h 2 α α 6 C 1 e h 2 α h 2 α β + 1 + C 4 5 + 2 h 2 α β 2 C 2 3 e h 2 α 2 1 + C 4 α β + C 1 e h 2 α 19 α + 12 h 2 α 3 / 2 + 27 β + 12 h 2 α β + e 3 h 2 α 4 C 1 3 1 + C 4 e 4 h 2 α α β + 16 1 + C 4 α C 10 + C 9 e 2 h 2 α + C 12 e h 2 α h 2 α β C 1 4 e 5 h 2 α 5 α + 3 β + 8 C 1 e h 2 α C 9 e 2 h 2 α α + β + 2 α C 10 h 2 α β + C 12 e h 2 α β 2 C 2 e 2 h 2 α 4 C 10 α + β + e h 2 α 12 C 1 2 1 + C 4 e 2 h 2 α 5 + 2 h 1 α α β 8 α C 9 e h 2 α h 2 α β + C 12 β + C 1 3 e 3 h 2 α 19 α + 12 h 2 α 3 / 2 27 β + 12 h 2 α β β 3
C 16 = B r S c S r e 4 h 1 + h 2 α 32 3 + 4 Rd α 2 h 1 h 2 + 2 β 3 16 C 1 3 1 + C 4 e 4 h 1 + h 2 α α β e 3 h 1 α 1 + 3 α β 3 + e 3 h 2 α 1 + 3 α β 3 3 C 2 4 5 α + 3 β e 4 h 1 α 1 + 4 α β 3 + e 4 h 2 α 1 + 4 α β 3 + 3 C 1 4 5 α + 3 β e 4 h 1 + 2 h 2 α 1 + 4 α β 3 + e 4 2 h 1 + h 2 α 1 + 4 α β 3 48 C 1 e 4 h 1 + h 2 α 2 C 10 h 1 + h 2 α α β h 1 h 2 + 2 β 3 + 4 C 12 α β e h 1 α 1 + α β 3 + e h 2 α 1 + α β 3 + C 9 α + β e 2 h 1 α 1 + 2 α β 3 + e 2 h 2 α 1 + 2 α β 3 96 1 + C 4 α β 2 C 10 e 3 h 1 + h 2 α e h 1 α 1 + α β 3 + e h 2 α 1 + α β 3 + e 4 h 1 + h 2 α C 12 h 1 + h 2 α 3 / 2 h 1 h 2 + 2 β 3 + 2 C 9 e h 1 α 1 + α β 3 + e h 2 α 1 + α β 3 288 C 1 C 2 2 α 3 C 1 e 4 h 1 + h 2 α h 1 + h 2 α α β h 1 h 2 + 2 β 3 + 1 + C 4 e 3 h 1 + h 2 α β e h 1 α 7 + 5 α β 3 + 2 h 2 α + α β 3 + e h 2 α 7 + 5 α β 3 2 h 2 α + α β 3 + 12 C 2 8 C 9 e 4 h 1 + h 2 α h 1 2 α 2 h 2 2 h 1 2 16 C 12 α β e 3 h 1 + 4 h 2 α e 4 h 1 + 3 h 2 α + 8 C 9 e 4 h 1 + h 2 α α β h 1 2 h 2 2 16 C 9 e 4 h 1 + h 2 α α 2 β h 1 + h 2 + 16 C 12 α β β 3 e 3 h 1 + 4 h 2 α e 4 h 1 + 3 h 2 α + 16 C 9 α β β 3 e 4 h 1 + h 2 α h 1 + h 2 + 4 C 10 α + β e 2 h 1 + 2 h 2 α 1 + 2 α β 3 + e 2 2 h 1 + h 2 α 1 + 2 α β 3 + 24 C 1 2 1 + C 4 e 4 h 1 + h 2 α α β e h 1 α 7 5 α β 3 + 2 h 1 α + α β 3 + e h 2 α 7 5 α β 3 2 h 2 α α β 3 + C 1 3 e 2 3 h 1 + 2 h 2 α 33 β + 2 α 3 / 2 6 h 1 19 β 3 + 6 α β 2 h 1 9 β 3 + 24 h 1 α 2 β 3 + α 25 + 24 h 1 β β 3 + e 2 2 h 1 + 3 h 2 α 33 β + 24 h 2 α 2 β 3 6 α β 2 h 2 + 9 β 3 2 α 3 / 2 6 h 2 + 19 β 3 + α 25 + 24 h 1 β β 3 + 4 C 2 3 4 1 + C 4 α β × e h 1 + 4 h 2 α 1 + 3 α β 3 + e 4 h 1 + h 2 α 1 + 3 α β 3 + 3 C 1 e 2 h 1 + h 2 α e 2 h 2 α 33 β + 24 h 1 α 2 β 3 + 6 α β 2 h 1 + 9 β 3 + α 3 / 2 12 h 1 + 38 β 3 + α 25 + 24 h 1 β β 3 + e 2 h 1 α 33 β + 24 h 2 α 2 β 3 + 6 α β 2 h 2 + 9 β 3 + 2 α 3 / 2 6 h 2 + 19 β 3 + α 25 + 24 h 2 β β 3

References

[1] T. W. Latham, “Fluid motion in a peristaltic pump,” MS Thesis, MIII, Cambridge, MA, 1966.Search in Google Scholar

[2] H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, pp. 799–825, 1969. https://doi.org/10.1017/s0022112069000899.Search in Google Scholar

[3] T. Hayat, H. Zahir, M. Mustafa, and A. Alsaedi, “Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study,” Results Phys., vol. 6, pp. 805–810, 2016. https://doi.org/10.1016/j.rinp.2016.10.015.Search in Google Scholar

[4] S. Akram, E. H. Aly, F. Afzal, and S. Nadeem, “Effect of the variable viscosity on the peristaltic flow of Newtonian fluid coated with magnetic field: application of adomian decomposition method for endoscope,” Coatings, vol. 9, no. 8, p. 524, 2019. https://doi.org/10.3390/coatings9080524.Search in Google Scholar

[5] L. A. Khan, M. Raza, N. A. Mir, and R. Ellahi, “Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel,” J. Therm. Anal. Calorim., vol. 140, pp. 879–890, 2020. https://doi.org/10.1007/s10973-019-08348-9.Search in Google Scholar

[6] M. Javed and R. Naz, “Peristaltic flow of a realistic fluid in a compliant channel,” Physica A, vol. 551, p. 123895, 2020. https://doi.org/10.1016/j.physa.2019.123895.Search in Google Scholar

[7] N. Parveen, M. Awais, S. Mumraiz, A. Ali, and M. Y. Malik, “An estimation of pressure rise and heat transfer rate for hybrid nanofluid with endoscopic effects and induced magnetic field: computational intelligence application,” Eur. Phys. J. Plus, vol. 135, p. 886, 2020. https://doi.org/10.1140/epjp/s13360-020-00874-y.Search in Google Scholar

[8] N. Imran, M. Javed, M. Sohail, and I. Tlili, “Simultaneous effects of heterogeneous–homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model,” J. Mater. Res. Technol., vol. 9, pp. 3520–3529, 2020. https://doi.org/10.1016/j.jmrt.2020.01.089.Search in Google Scholar

[9] U. M. Zahid, Y. Akbar, and F. M. Abbasi, “Entropy generation analysis for peristaltically driven flow of hybrid nanofluid,” Chin. J. Phys., vol. 67, pp. 330–348, 2020. https://doi.org/10.1016/j.cjph.2020.07.009.Search in Google Scholar

[10] T. Salahuddin, M. H. U. Khan, M. Arshad, M. A. Abdel-Sattar, and Y. Elmasry, “Peristaltic transport of γAl2O3/H2O and γAl2O3/C2H6O2 in an asymmetric channel,” J. Mater. Res. Technol., vol. 9, pp. 8337–8349, 2020. https://doi.org/10.1016/j.jmrt.2020.05.012.Search in Google Scholar

[11] B. Ahmed, T. Hayat, A. Alsaedi, and F. M. Abbasi, “Entropy generation in peristalsis with iron oxide,” J. Therm. Anal. Calorim., vol. 140, pp. 789–797, 2020. https://doi.org/10.1007/s10973-019-08933-y.Search in Google Scholar

[12] M. H. Haroun, “Non-linear peristaltic flow of fourth grade fluid in an inclined asymmetric channel,” Comput. Mater. Sci., vol. 39, pp. 324–333, 2007. https://doi.org/10.1016/j.commatsci.2006.06.012.Search in Google Scholar

[13] T. Hayat and S. Noreen, “Peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field,” C. R. Mec., vol. 338, pp. 518–528, 2010. https://doi.org/10.1016/j.crme.2010.06.004.Search in Google Scholar

[14] M. Mustafa, S. Abbasbandy, S. Hina, and T. Hayat, “Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects,” J. Taiwan Inst. Chem. Eng., vol. 45, pp. 308–316, 2014. https://doi.org/10.1016/j.jtice.2013.07.010.Search in Google Scholar

[15] A. M. Abd-Alla, S. M. Dahab, and H. D. El-Shahrany, “Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field,” J. Magn. Magn Mater., vol. 349, pp. 268–280, 2014. https://doi.org/10.1016/j.jmmm.2013.08.009.Search in Google Scholar

[16] A. Ali, S. Asghar, and M. Awais, “Thermophoresis and concentration effects in a fourth grade peristaltic flow convective walls,” J. Cent. South Univ., vol. 24, pp. 1654–1662, 2017. https://doi.org/10.1007/s11771-017-3571-0.Search in Google Scholar

[17] M. Kothandapani, V. Pushparaj, and J. Prakash, “Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel,” J. King Saud Univ., Eng. Sci., vol. 30, pp. 86–95, 2018. https://doi.org/10.1016/j.jksues.2015.12.009.Search in Google Scholar

[18] V. K. Sud, G. S. Sekhon, and R. K. Mishra, “Pumping action on blood by a magnetic field,” Bull. Math. Biol., vol. 39, pp. 385–390, 1977. https://doi.org/10.1007/bf02462917.Search in Google Scholar PubMed

[19] A. A. Khan, F. Masood, R. Ellahi, and M. M. Bhatti, “Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects,” J. Mol. Liq., vol. 258, pp. 186–195, 2018. https://doi.org/10.1016/j.molliq.2018.02.115.Search in Google Scholar

[20] T. Hayat, H. Zahir, A. Tanveer, and A. Alsaedi, “Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel,” Results Phys., vol. 8, pp. 1291–1300, 2018. https://doi.org/10.1016/j.rinp.2018.01.058.Search in Google Scholar

[21] R. Ahmed, N. Ali, K. Al-Khaled, S. U. Khan, and I. Tlili, “Finite difference simulations for non-isothermal hydromagnetic peristaltic flow of a bio-fluid in a curved channel. Applications to physiological systems,” Comput. Methods Progr. Biomed., vol. 195, p. 105672, 2020. https://doi.org/10.1016/j.cmpb.2020.105672.Search in Google Scholar PubMed

[22] H. Sadaf and S. Nadeem, “Fluid flow analysis of cilia beating in a curved channel in the presence of magnetic field and heat transfer,” Can. J. Phys., vol. 98, pp. 191–197, 2020. https://doi.org/10.1139/cjp-2018-0715.Search in Google Scholar

[23] Z. Abbas, M. Y. Rafiq, J. Hasnain, and H. Umer, “Impact of Lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls,” Alexandria Eng. J., vol. 60, pp. 1113–1122, 2021. https://doi.org/10.1016/j.aej.2020.10.035.Search in Google Scholar

[24] T. Hayat, H. Zahir, A. Alsaedi, and B. Ahmad, “Hall current and joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions,” Results Phys., vol. 7, pp. 2831–2836, 2017. https://doi.org/10.1016/j.rinp.2017.07.069.Search in Google Scholar

[25] H. Yasmin, N. Iqbal, and A. Tanveer, “Engineering applications of peristaltic fluid flow with Hall current, thermal deposition and convective conditions,” Mathematics, vol. 8, p. 1710, 2020. https://doi.org/10.3390/math8101710.Search in Google Scholar

[26] S. K. Asha and G. Sunitha, “Thermal radiation and Hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles,” Case Stud. Therm. Eng., vol. 17, p. 100560, 2020. https://doi.org/10.1016/j.csite.2019.100560.Search in Google Scholar

[27] A. Zeeshan, M. M. Bhatti, T. Muhammad, and L. Zhang, “Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel,” Physica A, vol. 550, p. 123999, 2020. https://doi.org/10.1016/j.physa.2019.123999.Search in Google Scholar

[28] Y. Akbar, F. M. Abbasi, and S. A. Shehzad, “Effectiveness of Hall current and ion slip on hydromagnetic biologically inspired flow of Cu−Fe3O4/H2O hybrid nanomaterial,” Phys. Scripta, vol. 96, no. 2, p. 025210, 2020. https://doi.org/10.1088/1402-4896/abcff1.Search in Google Scholar

[29] Z. Hussain and T. Muhammad, “Simultaneous influence of Hall and wall characteristics in peristaltic convective carbon–water flow subject to Soret and Dufour effects,” Arabian J. Sci. Eng., vol. 46, pp. 2033–2046, 2021. https://doi.org/10.1007/s13369-020-05017-0.Search in Google Scholar

[30] A. E. Scheidgger, The Physics of Flow through Porous Media, New York, McGraw-Hill, 1963.Search in Google Scholar

[31] N. T. Eldabe, M. A. Elogail, S. M. Elshaboury, and A. A. Hasan, “Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer,” Appl. Math. Model., vol. 40, pp. 315–328, 2016. https://doi.org/10.1016/j.apm.2015.04.043.Search in Google Scholar

[32] T. Hayat, M. Rafiq, and B. Ahmad, “Soret and Dufour effects on MHD peristaltic flow of Jeffrey fluid in a rotating system with porous medium,” PLoS One, vol. 11, p. e0145525, 2016. https://doi.org/10.1371/journal.pone.0145525.Search in Google Scholar PubMed PubMed Central

[33] M. V. Krishna, K. Bharathi, and A. J. Chamkha, “Hall effects on MHD peristaltic flow of Jeffrey fluid through porous medium in a vertical stratum,” Interfacial Phenom. Heat Transf., vol. 6, pp. 253–268, 2018. https://doi.org/10.1615/interfacphenomheattransfer.2019030215.Search in Google Scholar

[34] H. Vaidya, C. Rajashekhar, B. B. Divya, G. Manjunatha, K. V. Prasad, and L. L. Animasaun, “Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel,” Results Phys., vol. 18, p. 103295, 2020. https://doi.org/10.1016/j.rinp.2020.103295.Search in Google Scholar

[35] A. Riaz, A. Zeeshan, M. M. Bhatti, and R. Ellahi, “Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium,” Physica A, vol. 545, p. 123788, 2020. https://doi.org/10.1016/j.physa.2019.123788.Search in Google Scholar

[36] M. Turkyilmazoglu, “Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface,” J. Heat Tran., vol. 134, no. 7, p. 071701, 2012. https://doi.org/10.1115/1.4006165.Search in Google Scholar

[37] S. Hina, T. Hayat, and A. Alsaedi, “Slip effects on MHD peristaltic motion with heat and mass transfer,” Arabian J. Sci. Eng., vol. 39, pp. 593–603, 2014. https://doi.org/10.1007/s13369-013-0692-0.Search in Google Scholar

[38] M. Turkyilmazoglu, “Slip flow and heat transfer over a specific wedge: an exactly solvable Falkner–Skan equation,” J. Eng. Math., vol. 92, pp. 73–81, 2015. https://doi.org/10.1007/s10665-014-9758-6.Search in Google Scholar

[39] T. Hayat, A. A. Khan, F. Bibi, and S. Farooq, “Activation energy and non-Darcy resistance in magneto peristalsis of Jeffrey material,” J. Phys. Chem. Solid., vol. 129, pp. 155–161, 2019. https://doi.org/10.1016/j.jpcs.2018.12.044.Search in Google Scholar

[40] A. Ali, Z. Shah, S. Mumraiz, P. Kumam, and M. Awais, “Entropy generation on MHD peristaltic flow Cu–water nanofluid with slip conditions,” Heat Tran. Asian Res., vol. 48, no. 8, pp. 4301–4319, 2019. https://doi.org/10.1002/htj.21593.Search in Google Scholar

[41] T. Hayat, Z. Nisar, and A. Alsaedi, “Impacts of slip in radiative MHD peristaltic flow of fourth grade nanomaterial with chemical reaction,” Int. Commun. Heat Mass Tran., vol. 119, p. 104976, 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104976.Search in Google Scholar

[42] A. Ali, S. Saleem, S. Mumraiz, A. Saleem, M. Awais, and D. N. Khan Marwat, “Investigation on TiO2−Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material,” J. Therm. Anal. Calorim., vol. 143, pp. 1985–1996, 2021. https://doi.org/10.1007/s10973-020-09648-1.Search in Google Scholar

Received: 2019-09-11
Revised: 2021-04-11
Accepted: 2021-05-12
Published Online: 2021-06-15
Published in Print: 2022-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2019-0226/html
Scroll to top button