Home Nonlinear Vibration of Truncated Conical Shells: Donnell, Sanders and Nemeth Theories
Article
Licensed
Unlicensed Requires Authentication

Nonlinear Vibration of Truncated Conical Shells: Donnell, Sanders and Nemeth Theories

  • Mehrdad Bakhtiari , Aouni A. Lakis EMAIL logo and Youcef Kerboua
Published/Copyright: October 15, 2019

Abstract

Nonlinear free vibration of truncated conical shells has been investigated for three different shell theories; Donnell, Sanders and Nemeth to investigate the effect of their simplifying assumptions. The displacement field of a finite element model that was obtained from the exact solution of equilibrium equations of Sander’s improved first-approximation theory is used to define the nonlinear strain energy of conical shells. Employing generalized coordinates method the equations of motion are derived and subsequently the amplitude equation of nonlinear vibration of conical shells was developed. The amplitude equation is solved for multiple cases of isotropic materials. Linear and nonlinear free vibration results are validated against the existing studies in scientific literature and demonstrate good accordance. The validated model is used to investigate effects of different parameters including circumferential mode number, cone-half angle, length to radius ratio, thickness to radius ratio and boundary conditions for the nonlinear vibration of conical shells.

MSC 2010: 74K25

NOMENCLATURE

A1,A2

surface metrics along x and θ directions

R1,R2

principle radii of curvature along x and θ directions

CCˉ0CCˉ0

symmetric constitutive matrix for conical element

EE

reference surface total strain vector defined by eq. (7)

e11,e22,e12

linear deformation parameters defined by eq. (3)

AQAQ

characteristic polynomial matrix

K11K11,K˜12K˜12,K˜22K˜22

assembled first, second and third order structural stiffness matrices

MTMT, MSMS

assembled translational and structural mass matrices defined by eqs. (28) and (29)

NN

displacement field matrix of a finite element defined by eq. (23)

Ui(i = 1,2,3)

displacements along the longitudinal, lateral and normal to surface directions, off the reference surface

ui(i = 1,2,3)

displacements along the longitudinal (U), lateral (V) and normal (W), on the reference surface

cNL,c1,c2,c3

flag parameters to define different shell theories

L

truncated cone element length

nc

circumferential mode number

αc

cone half angle

χ11,χ22,χ12,χχ

linear deformation parameters defined by eq.(5)

δm

nodal degrees of freedom associated with mth node

ϵ11,ϵ22,ϵϵ

reference surface strains defined by eq. (4)

φ1,φ2, φ

linear rotation parameters defined by eq. (2)

ρ11,ρ22

geodesic radii of curvature radii of curvature along x and θ directions

δδe

vector of element degrees of freedom

δδ

vector of whole system degrees of freedom

References

[1] U. S. Lindholm, W. C. Hu, Non-symmetric transverse vibrations of truncated conical shells, Int. J. Mech. Sci. 8(9) (1966), 561–579. http://www.sciencedirect.com/science/article/pii/0020740366900786.10.1016/0020-7403(66)90078-6Search in Google Scholar

[2] C. L. Sun, S. Y. Lu, Nonlinear dynamic behavior of heated conical and cylindrical shells. Nucl. Eng. Des. 7(2) (1968), 113–122. http://www.sciencedirect.com/science/article/pii/0029549368900538.10.1016/0029-5493(68)90053-8Search in Google Scholar

[3] D. Bendavid, J. Mayers, A nonlinear theory for the bending, buckling, and vibrations of conical shells. Tech. Rep., DTIC Document 1970. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0873255.10.21236/AD0873255Search in Google Scholar

[4] K. Kanaka Raju, G. Venkateswara Rao, Large amplitude asymmetric vibrations of some thin shells of revolution, J. Sound Vib. 44(3) (1976), 327–333. http://dx.doi.org/10.1016/0022-460X(76)90505-8.10.1016/0022-460X(76)90505-8Search in Google Scholar

[5] T. Ueda, Nonlinear analysis of the supersonic flutter of a truncated conical shell using the finite element method, Trans. Jpn Soc. Aeronaut. Space Sci. 20(50) (1978), 225–240.Search in Google Scholar

[6] M. D. Olson, Some experimental observations on the nonlinear vibration of cylindrical shells. AIAA J. 3(9) (1965), 1775–1777. https://arc.aiaa.org/doi/pdfplus/10.2514/3.55196.10.2514/3.55196Search in Google Scholar

[7] R. H. Liu, J. Li, Non-linear vibration of shallow conical sandwich shells, Int. J. Non-Linear Mech. 30(2) (1995), 97–109. http://www.sciencedirect.com/science/article/pii/0020746294000326.10.1016/0020-7462(94)00032-6Search in Google Scholar

[8] C. S. Xu, Z. Q. Xia, C. Y. Chia, Non-linear theory and vibration analysis of laminated truncated, thick, conical shells, Int. J. Non-linear Mech. 1996;31(2):139–154. http://www.sciencedirect.com/science/article/pii/0020746295000518.10.1016/0020-7462(95)00051-8Search in Google Scholar

[9] Y. M. Fu, C. P. Chen, Non-linear vibration of elastic truncated conical moderately thick shells in large overall motion, Int. J. Non-Linear Mech. 36(5) (2001), 763–771. http://dx.doi.org/10.1016/S0020-7462(00)00042-1.10.1016/S0020-7462(00)00042-1Search in Google Scholar

[10] J. Awrejcewicz, V. A. Krysko, T. V. Shchekaturova, Transitions from regular to chaotic vibrations of spherical and conical axially-symmetric shells, Int. J. Struct. Stab. Dyn. 05(03) (2005), 359–385. http://dx.doi.org/10.1142/S0219455405001623.10.1142/S0219455405001623Search in Google Scholar

[11] V. A. Krysko, J. Awrejcewicz, T. V. Shchekaturova, Chaotic vibrations of spherical and conical axially symmetric shells, Arch. Appl. Mech. 74(5–6) (2005), 338–358. http://dx.doi.org/10.1007/s00419-004-0356-3.10.1007/s00419-004-0356-3Search in Google Scholar

[12] C. Chen, L. Dai, Nonlinear vibration and stability of a rotary truncated conical shell with intercoupling of high and low order modals, Commun. Nonlinear Sci. Numer. Simul. 14(1) (2009), 254–269. http://www.sciencedirect.com/science/article/pii/S100757040700161X.10.1016/j.cnsns.2007.06.007Search in Google Scholar

[13] C. Chen, Nonlinear dynamic of a rotating truncated conical shell, in: Nonlinear approaches in engineering applications, pp. 349–391, Springer, New York, NY, 2012. ISBN 978-1-4614-1468-1 978-1-4614-1469-8. http://dx.doi.org/10.1007/978-1-4614-1469-8_12.10.1007/978-1-4614-1469-8_12Search in Google Scholar

[14] A. H. Sofiyev, The non-linear vibration of FGM truncated conical shells, Compos. Struct. 94(7) (2012), 2237–2245. http://www.sciencedirect.com/science/article/pii/S0263822312000463.10.1016/j.compstruct.2012.02.005Search in Google Scholar

[15] A. M. Najafov, A. H. Sofiyev, The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium, Int. J. Mech. Sci. 66 (2013), 33–44. http://www.sciencedirect.com/science/article/pii/S0020740312002251.10.1016/j.ijmecsci.2012.10.006Search in Google Scholar

[16] A. M. Najafov, A. H. Sofiyev, N. Kuruoglu, On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings, Acta Mech. 225(2) (2013), 563–580. http://dx.doi.org/10.1007/s00707-013-0980-5.10.1007/s00707-013-0980-5Search in Google Scholar

[17] A. H. Sofiyev, Large-amplitude vibration of non-homogeneous orthotropic composite truncated conical shell, Compos. Part B: Eng. 61 (2014a), 365–374. http://www.sciencedirect.com/science/article/pii/S135983681300351X.10.1016/j.compositesb.2013.06.040Search in Google Scholar

[18] F. Sabri, A. A. Lakis, Hybrid finite element method applied to supersonic flutter of an empty or partially liquid-filled truncated conical shell, J. Sound Vib. 329(3) (2010), 302–316. http://www.sciencedirect.com/science/article/pii/S0022460X09007470.10.1016/j.jsv.2009.09.023Search in Google Scholar

[19] Y. Kerboua, A. A. Lakis, M. Hmila, Vibration analysis of truncated conical shells subjected to flowing fluid, Appl. Math. Model. 34(3) (2010), 791–809. http://www.sciencedirect.com/science/article/pii/S0307904X09001826.10.1016/j.apm.2009.06.028Search in Google Scholar

[20] Y. Kerboua, A. A. Lakis, Numerical model to analyze the aerodynamic behavior of a combined conical–cylindrical shell, Aerosp. Sci. Technol. 58 (2016), 601–617. http://www.sciencedirect.com/science/article/pii/S1270963816307064.10.1016/j.ast.2016.09.019Search in Google Scholar

[21] M. P. Nemeth, A Leonard–Sanders–Budiansky–Koiter-type nonlinear shell theory with a hierarchy of transverse-shearing deformations.Tech. Rep. NASA/TP–2013-218025, 2013a. http://ntrs.nasa.gov/search.jsp?R=20140000788.Search in Google Scholar

[22] M. P. Nemeth, An exposition on the nonlinear kinematics of shells, including transverse shearing deformations. Tech. Rep. NASA/TM–2013-217964; NASA, 2013b. http://ntrs.nasa.gov/search.jsp?R=20130011025.Search in Google Scholar

[23] J. L. Sanders Jr, An improved first-approximation theory for thin shells 24 (1960). US Government Printing Office.Search in Google Scholar

[24] J. L. Sanders Jr, Nonlinear theories for thin shells. Tech. Rep. AD0253822; DTIC Document, 1961. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0253822.10.21236/AD0253822Search in Google Scholar

[25] J. L. Sanders Jr, Nonlinear theories for thin shells, Q. Appl. Math. (1963), 21–36. http://www.jstor.org/stable/43634948.10.1090/qam/147023Search in Google Scholar

[26] L. H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending, Trans. Asme 56(11) (1934), 795–806. http://cybra.lodz.pl/Content/6356/AER_56_12.pdf.10.1115/1.4019867Search in Google Scholar

[27] M. Bakhtiari, A. A. LAKIS, Y. Kerboua, Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories. Tech. Rep. EPM-RT-2018-01 (2018). https://publications.polymtl.ca/3011/1/EPM-RT-2018-01_Bakhtiari.pdf.10.1515/ijnsns-2018-0377Search in Google Scholar

[28] M. Amabili, Nonlinear vibrations and stability of shells and plates. Cambridge University Press (2008). https://books.google.ca/books?hl=en&lr=&id=0Ymw-pi7-x4C&oi=fnd&pg=PA52&dq=Nonlinear+Vibrations+and+Stability+of+Shells+and+Plates&ots=uZtdkX_GUL&sig=hStbpt8yVKKY4Eeh6L0QEzyT2NY.10.1017/CBO9780511619694Search in Google Scholar

[29] R. Lewandowski, Free vibration of structures with cubic non-linearity-remarks on amplitude equation and Rayleigh quotient, Comput. Meth. Appl. Mech. Eng. 192(13) (2003), 1681–1709. http://dx.doi.org/10.1016/S0045-7825(03)00189-0.10.1016/S0045-7825(03)00189-0Search in Google Scholar

[30] T. Ueda, Non-linear free vibrations of conical shells, J. Sound Vib. 64(1) (1979), 85–95. http://www.sciencedirect.com/science/article/pii/0022460X79905741.10.1016/0022-460X(79)90574-1Search in Google Scholar

[31] M. Shakouri, M. A. Kouchakzadeh, Analytical solution for vibration of generally laminated conical and cylindrical shells, Int. J. Mech. Sci. 131–132(Supplement C) (2017), 414–425. http://dx.doi.org/10.1016/j.ijmecsci.2017.07.016.10.1016/j.ijmecsci.2017.07.016Search in Google Scholar

[32] M. K. Singha, R. Daripa, Nonlinear vibration of symmetrically laminated composite skew plates by finite element method, Int. J. Non-Linear Mech. 42(9) (2007), 1144–1152. http://dx.doi.org/10.1016/j.ijnonlinmec.2007.08.001.10.1016/j.ijnonlinmec.2007.08.001Search in Google Scholar

[33] L. Tong, Free vibration of orthotropic conical shells, Int. J. Eng. Sci. 31(5) (1993), 719–733.10.1016/0020-7225(93)90120-JSearch in Google Scholar

[34] W. C. Hu, J. F. Gormley, U. S. Lindholm, An experimental study and inextensional analysis of vibrations of free-free conical shells, Int. J. Mech. Sci. 9(3) (1967), 123–128.10.1016/0020-7403(67)90002-1Search in Google Scholar

[35] H. M. C. Adelman, A method for computation of vibration modes and frequencies of orthotropic thin shells of revolution having general meridional curvature. Tech. Rep.NASA TN 0-4972 (1969). https://ntrs.nasa.gov/search.jsp?R=19690007137.Search in Google Scholar

[36] J. F. H. Gormley, Flexural vibrations of conical shells with free edges. Tech. Rep. NASA CR-384 (1966). https://ntrs.nasa.gov/search.jsp?R=19660008884.Search in Google Scholar

[37] E. C. Naumann, On the prediction of the vibratory behavior of free-free truncated conical shells. Tech. Rep. NASA TN D-4772 (1968). https://ntrs.nasa.gov/search.jsp?R=19680023585.Search in Google Scholar

[38] J. L. Nowinski, Nonlinear transverse vibrations of orthotropic cylindrical shells, AIAA J. 1(3) (1963), 617–620.10.2514/3.1604Search in Google Scholar

[39] K. K. Raju, G. V. Rao, Large amplitude asymmetric vibrations of some thin shells of revolution, J. Sound Vib. 44(3) (1976), 327–333.10.1016/0022-460X(76)90505-8Search in Google Scholar

[40] A. Selmane, A. A. Lakis, Influence of geometric non-linearities on the free vibrations of orthotropic open cylindrical shells, Int. J. Numer. Methods Eng. 40(6) (1997), 1115–1137. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(19970330)40:6.10.1002/(SICI)1097-0207(19970330)40:6<1115::AID-NME105>3.0.CO;2-HSearch in Google Scholar

[41] A. H. Sofiyev, The combined influences of heterogeneity and elastic foundations on the nonlinear vibration of orthotropic truncated conical shells, Compos. Part B: Eng. 61 (2014b), 324–339. http://dx.doi.org/10.1016/j.compositesb.2014.01.047.10.1016/j.compositesb.2014.01.047Search in Google Scholar

Received: 2018-12-11
Accepted: 2019-09-19
Published Online: 2019-10-15
Published in Print: 2020-02-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0377/html
Scroll to top button