Home Technology Weak Solutions for Fractional Differential Equations via Henstock–Kurzweil–Pettis Integrals
Article
Licensed
Unlicensed Requires Authentication

Weak Solutions for Fractional Differential Equations via Henstock–Kurzweil–Pettis Integrals

  • Haide Gou EMAIL logo and Yongxiang Li
Published/Copyright: October 23, 2019

Abstract

In this paper, we used Henstock–Kurzweil–Pettis integral instead of classical integrals. Using fixed point theorem and weak measure of noncompactness, we study the existence of weak solutions of boundary value problem for fractional integro-differential equations in Banach spaces. Our results generalize some known results. Finally, an example is given to demonstrate the feasibility of our conclusions.

JEL Classification: 26A33; 34G20; 47H40; 45B05; 34B10

Acknowledgements

The authors wish to thank the referees for their endeavors and valuable comments. This work is supported by National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/ 501100001809, 11661071).

References

[1] M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss. Math. Differential Incl. 15 (1995), 5–14.Search in Google Scholar

[2] M. Cichoń, On solutions of differential equations in Banach spaces, Nolinear Anal. 60 (2005), 651–667.10.1016/j.na.2004.09.041Search in Google Scholar

[3] M. Cichoń, I. Kubiaczyk, A. Sikorska-Nowak and A. Yantir, Weak solution for the dynamic Cauchy problem in Banach spaces, Nolinear Anal. 71 (2009), 2936–2943.10.1016/j.na.2009.01.175Search in Google Scholar

[4] D. O’Regan, Existence results for nonlinear integral equation, J. Math. Anal. Appl. 192 (1995), 705–726.10.1006/jmaa.1995.1199Search in Google Scholar

[5] D. O’Regan, Singular integral equations arising in draining and coating flows, Appl. Math. Comput. 205(1),(2008) 438–441.10.1016/j.amc.2008.08.026Search in Google Scholar

[6] F. S. De Blasi, On a property of the unit sphere in Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 21 (1977), 259–262.Search in Google Scholar

[7] G. Emanuelle, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. Roum. 25 (1981), 353–358.Search in Google Scholar

[8] H. A. H. Salem, On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies, J. Comput. Appl. Math. 224(2), (2009), 516–572.10.1016/j.cam.2008.05.033Search in Google Scholar

[9] H. A. H. Salem, On the nonlinear Hammerstein integral equations in Banach spaces and application to the boundary value problem of fractioanl order, Math. Comput. Model. 48 (2008), 1178–1190.10.1016/j.mcm.2007.12.015Search in Google Scholar

[10] H. A. H. Salem and M. Cichoń, On solution of fractional order boundary value problems with integral boundary conditions in Banach spaces, J. Funct. Spaces and Appl. vol. 2013, Article ID 428094, 13 pages.10.1155/2013/428094Search in Google Scholar

[11] M. Cichoń and I. Kubiaczyk, Existence theorem for the Hammerstein integral equation, Discuss. Math. Differ. Incl. 16 (1996), 171–177.Search in Google Scholar

[12] R. P. Agarwal, V. Lupulescu, D. O’Regan and G. Rahman, Weak solutions for fractional differential equation as in nonreflexive Banach spaces via Riemann–Pettis integrals, Math. Nachr. 289(4) (2016), 395–409.10.1002/mana.201400010Search in Google Scholar

[13] A. B. Amar, Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock–Kurzweil–Pettis integrability, Comment. Math. Univ. Carolin. 52(2) (2011), 177–190.Search in Google Scholar

[14] A. B. Amar, On an integral equation under Henstock–Kurzweil–Pettis integrability, Arb. J. Math. 4 (2015), 91–99.10.1007/s40065-014-0125-2Search in Google Scholar

[15] B. L. Li and H. D. Gou, Weak solutions nonlinear fractional integrodifferential equations in nonreflexive Banach spaces, Boundary value prob. 2016 (2016), Art. No. 209.10.1186/s13661-016-0716-2Search in Google Scholar

[16] M. Cichoń, I. Kubiaczyk and A. Sikorska Nowak, The Henstock–Kurwzeil–Pettis integrals and existence theorems for the Cauchy problem, Czechoslovak. Math. J. 54 (2004), 279–289.10.1023/B:CMAJ.0000042368.51882.abSearch in Google Scholar

[17] B. Satco, A Kolmós-type theorem for the set-valued Henstock–Kurzweil–Pettis integrals and applications. Czech. Math. J. 56(131),(2006) 1029–1047.10.1007/s10587-006-0078-5Search in Google Scholar

[18] D. Kurtz and C. Swartz, Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock–Kurzweil and McShane, World Scientific, Singapore, 2004.10.1142/5538Search in Google Scholar

[19] S. B. kaliaj, A. D. Tato and F. D. Gumeni, Controlled convergence theorem for the Henstock–Kurwzeil–Pettis integrals on m-dimensional compact intervals, Czechoslovak. Math. J. 62(1), (2012) 243–255.10.1007/s10587-012-0009-6Search in Google Scholar

[20] L. Di Piazza and K. Musial, Characterizations of Kurzweil–Henstock–Pettis integrable functions, Studia Mathematica. 176(2) (2006), 159–176.10.4064/sm176-2-4Search in Google Scholar

[21] Z. Bai and H. Lü, Positive solutions boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495–505.10.1016/j.jmaa.2005.02.052Search in Google Scholar

[22] N. Hussain and M. A. Taoudi, Krasnoselskii-type fixed point theorems with applications to Volterra integral equations. Fixed Point Theory Appl. 196 (2013).10.1186/1687-1812-2013-196Search in Google Scholar

[23] A. R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces, 387–404, Orlando, 1978.10.1016/B978-0-12-434160-9.50028-XSearch in Google Scholar

[24] J. Garcia-Falset, Existence of fixed points and measure of weak noncompactness, Nonlinear Anal. 71 (2009), 2625–2633.10.1016/j.na.2009.01.096Search in Google Scholar

Received: 2018-06-19
Accepted: 2019-09-30
Published Online: 2019-10-23
Published in Print: 2020-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0174/html
Scroll to top button