Abstract
In this work, shifted fractional-order Jacobi orthogonal function in the interval
References
[1] A. Dabiri and E. A. Butcher, Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods, Appl. Math. Model. 56 (2018), 424–448.10.1016/j.apm.2017.12.012Search in Google Scholar
[2] A. Dabiri and E. A. Butcher, Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci. 50 (2017), 284–310.10.1016/j.cnsns.2017.02.009Search in Google Scholar
[3] J. A. T. Machado and B. P. Moghaddam, A robust algorithm for nonlinear variable-order fractional control systems with delay, Int. J. Nonlinear Sci. Num. 19 (2018), doi: https://doi.org/ 10.1515/ijnsns-2016-0094.Search in Google Scholar
[4] F. K. Keshi, B. P. Moghaddam and A. Aghili, A numerical approach for solving a class of variable-order fractional functional integral equations, Comput. Appl. Math. 37 (2018), 4821–4834.10.1007/s40314-018-0604-8Search in Google Scholar
[5] M. Giona and H. E. Roman, Fractional diffusion equation for transport phenomena in random media, Phys. A. 185 (1992), 87–97.10.1016/0378-4371(92)90441-RSearch in Google Scholar
[6] I. Podlubny, Fractional differential equations, in: Mathematics in science and engineering, Academic Press Inc., San Diego, CA, 1999.Search in Google Scholar
[7] R. Hilfer, Applications of fractional calculus in physics, Word Scientific, Singapore, 2000.10.1142/3779Search in Google Scholar
[8] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. 35 (2011), 5662–5672.10.1016/j.apm.2011.05.011Search in Google Scholar
[9] A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys. 281 (2015), 876–895.10.1016/j.jcp.2014.10.060Search in Google Scholar
[10] N. Ford and M. Morgado, Distributed order equations as boundary value problems, Comput. Math. Appl. 64 (2012), 2973–2981.10.1016/j.camwa.2012.01.053Search in Google Scholar
[11] M. L. Morgado and M. Rebelo, Numerical approximation of distributed order reaction-diffusion equations, J. Comput. Appl. 275 (2015), 216–227.10.1016/j.cam.2014.07.029Search in Google Scholar
[12] T. T. Hartley and C. F. Lorenzo, Fractional-order system identification based on continuous order-distributions, Signal Process, 83 (2003), 2287–2300.10.1016/S0165-1684(03)00182-8Search in Google Scholar
[13] T. M. Atanackovic, L. Oparnica and S. Pilipovic, Semilinear ordinary differential equation coupled with distributed order fractional differential equation, Nonlinear Anal. Theory Methods Appl. 72 (2010), 4101–4114.10.1016/j.na.2010.01.042Search in Google Scholar
[14] M. Caputo, Elasticite dissipazione, Zanichelli, Bologna, 1969.Search in Google Scholar
[15] N. J. Ford, M. L. Morgado and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal. 44 (2015), 289–305.Search in Google Scholar
[16] N. J. Ford, M. L Morgado and M. Rebelo, A numerical method for the distributed order time-fractional diffusion equation, in: Proceedings of the International Conference on Fractional Differentiation and Its Applications, IEEE (2014), 1–6.10.1109/ICFDA.2014.6967389Search in Google Scholar
[17] V. G. Pimenov, A. S. Hendy and R. H. De Staelen, On a class of non-linear delay distributed order fractional diffusion equations, J. Comput. Appl. Math. 318 (2017), 433–443.10.1016/j.cam.2016.02.039Search in Google Scholar
[18] W. Bu, A. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput. 72 (2017), 422–441.10.1007/s10915-017-0360-8Search in Google Scholar
[19] W. Fan and F. Liu, A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain, Appl. Math. Lett. 77 (2018), 114–121.10.1016/j.aml.2017.10.005Search in Google Scholar
[20] A. H. Bhrawy and M. A. Zaky, Numerical simulation of multi-dimensional distributed-order generalized Schrdinger equations, Nonlinear Dyn. 89 (2017), 1415–1432.10.1007/s11071-017-3525-ySearch in Google Scholar
[21] M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn. 91 (2018), 2667–2681.10.1007/s11071-017-4038-4Search in Google Scholar
[22] M. A. Zaky and J. A. T. Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. 52 (2017), 177–189.10.1016/j.cnsns.2017.04.026Search in Google Scholar
[23] A. H. Khater, W. Malfliet, D. K. Callebaut and E. S. Kamel, The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations, Chaos Soliton Fract. 14 (2002), 513–522.10.1016/S0960-0779(01)00247-8Search in Google Scholar
[24] K. Mayawala, D. G. Vlachos and J. S. Edwards, Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations, Biophys Chem. 121 (2006), 194–208.10.1016/j.bpc.2006.01.008Search in Google Scholar
[25] P. A. Markowich and P. Szmolyan, A system of convection-diffusion equations with small diffusion coefficient arising in semiconductor physics, J. Differ. Equations, 81 (1989), 234–254.10.1016/0022-0396(89)90122-8Search in Google Scholar
[26] A. Kolmogorov, I. Petrovskii and N. Piscounov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Math. Appl. 25 (1991), 242–270.10.1007/978-94-011-3030-1_38Search in Google Scholar
[27] A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969), 279–303.10.1017/S0022112069000176Search in Google Scholar
[28] L. A. Segel, Distant sidewalls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38 (1969), 203–224.10.1017/S0022112069000127Search in Google Scholar
[29] Y. B. Zeldovich and D. A. Frank-Kamenetsky, A theory of thermal propaga- tion of flame, Acta Physicochim. 9 (1938), 341–350.Search in Google Scholar
[30] R. Gorenflo, Y. Luchko and M. Stojanovic, Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density, Fract. Calc. Appl. Anal. 16 (2013), 297–316.10.2478/s13540-013-0019-6Search in Google Scholar
[31] F. Mainardi, G. Pagnini, A. Mura and R. Gorenflo, Time-fractional diffusion of distributed order, J. Vib. Control. 14 (2008), 1267–1290.10.1177/1077546307087452Search in Google Scholar
[32] S. Kazem, S. Abbasbandy and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model. 37 (2013), 5498–5510.10.1016/j.apm.2012.10.026Search in Google Scholar
[33] M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: theory and numerical approximations, J. Comput. Phys. 47 (2013), 2108–2131.10.1016/j.jcp.2013.06.031Search in Google Scholar
[34] H. Khosravian-Arab, M. Dehghan and M. R. Eslahchi, Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications, J. Comput. Phys. 229 (2015), 526–560.10.1016/j.jcp.2015.06.030Search in Google Scholar
[35] S. Chen, J. Shen and L. L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp. 85 (2016), 1603–1638.10.1090/mcom3035Search in Google Scholar
[36] M. A. Zaky, E. H. Doha and J. A. Tenreiro Machado, A spectral framework for fractional variational problems based on fractional Jacobi functions, Appl. Numer. Math. 132 (2018), 51–72.10.1016/j.apnum.2018.05.009Search in Google Scholar
[37] M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys. 67 (2015), 773–791.Search in Google Scholar
[38] E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A Math. Gen. 37 (2004), 657–675.10.1088/0305-4470/37/3/010Search in Google Scholar
[39] E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and R. A. V. Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys. 26 (2014), 244–255.10.1016/j.jcp.2014.01.003Search in Google Scholar
[40] A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations, J. Comput. Phys. 294 (2015), 462–483.10.1016/j.jcp.2015.03.063Search in Google Scholar
[41] M. A. Zaky, E. H. Doha and J. A. Tenreiro Machado, A spectral numerical method for solving distributed-order fractional initial value problems, J. Comput. Nonlinear Dynam. 13 (2018), doi: 10.1115/1.4041030.Search in Google Scholar
[42] E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and R. A. V. Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys. 26 (2014), 244–255.10.1016/j.jcp.2014.01.003Search in Google Scholar
[43] A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations, J. Comput. Phys. 294 (2015), 462–483.10.1016/j.jcp.2015.03.063Search in Google Scholar
[44] G-H. Gao, H-W. Sun and Z-Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys. 298 (2015), 337–359.10.1016/j.jcp.2015.05.047Search in Google Scholar
[45] G-H. Gao and Z-Z. Sun, Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations, Comput. Math. Appl. 69 (2015), 926–948.10.1016/j.camwa.2015.02.023Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Numerical Treatment of the Modified Burgers’ Equation via Backward Differentiation Formulas of Orders Two and Three
- Return Mapping Algorithms (RMAs) for Two-Yield Surface Thermoviscoplastic Models Using the Consistent Tangent Operator
- Synchronization of Multiple Mechanical Oscillators Under Noisy Measurements Signals and Mismatch Parameters
- Nonlinear Wave Modulation in Nanorods Using Nonlocal Elasticity Theory
- Asymptotic Behavior of the Fractional Order three Species Prey–Predator Model
- Continuous Dependence on Data for Solutions of Fractional Extended Fisher–Kolmogorov Equation
- L-stable Explicit Nonlinear Method with Constant and Variable Step-size Formulation for Solving Initial Value Problems
- Weakness and Mittag–Leffler Stability of Solutions for Time-Fractional Keller–Segel Models
- Stability Analysis of Multi-point Boundary Value Problem for Sequential Fractional Differential Equations with Non-instantaneous Impulses
- Existence and Uniqueness of Classical and Mild Solutions of Generalized Impulsive Evolution Equation
- A Collocation Method Based on Jacobi and Fractional Order Jacobi Basis Functions for Multi-Dimensional Distributed-Order Diffusion Equations
- Two-Dimensional Legendre Wavelets for Solving Variable-Order Fractional Nonlinear Advection-Diffusion Equation with Variable Coefficients
Articles in the same Issue
- Frontmatter
- Numerical Treatment of the Modified Burgers’ Equation via Backward Differentiation Formulas of Orders Two and Three
- Return Mapping Algorithms (RMAs) for Two-Yield Surface Thermoviscoplastic Models Using the Consistent Tangent Operator
- Synchronization of Multiple Mechanical Oscillators Under Noisy Measurements Signals and Mismatch Parameters
- Nonlinear Wave Modulation in Nanorods Using Nonlocal Elasticity Theory
- Asymptotic Behavior of the Fractional Order three Species Prey–Predator Model
- Continuous Dependence on Data for Solutions of Fractional Extended Fisher–Kolmogorov Equation
- L-stable Explicit Nonlinear Method with Constant and Variable Step-size Formulation for Solving Initial Value Problems
- Weakness and Mittag–Leffler Stability of Solutions for Time-Fractional Keller–Segel Models
- Stability Analysis of Multi-point Boundary Value Problem for Sequential Fractional Differential Equations with Non-instantaneous Impulses
- Existence and Uniqueness of Classical and Mild Solutions of Generalized Impulsive Evolution Equation
- A Collocation Method Based on Jacobi and Fractional Order Jacobi Basis Functions for Multi-Dimensional Distributed-Order Diffusion Equations
- Two-Dimensional Legendre Wavelets for Solving Variable-Order Fractional Nonlinear Advection-Diffusion Equation with Variable Coefficients