Home A MUSTA-FORCE Algorithm for Solving Partial Differential Equations of Relativistic Hydrodynamics
Article
Licensed
Unlicensed Requires Authentication

A MUSTA-FORCE Algorithm for Solving Partial Differential Equations of Relativistic Hydrodynamics

  • Joanna Porter-Sobieraj , Marcin Słodkowski EMAIL logo , Daniel Kikoła , Jan Sikorski and Paweł Aszklar
Published/Copyright: December 16, 2017

Abstract

Understanding event-by-event correlations and fluctuations is crucial for the comprehension of the dynamics of heavy ion collisions. Relativistic hydrodynamics is an elegant tool for modelling these phenomena; however, such simulations are time-consuming, and conventional CPU calculations are not suitable for event-by-event calculations. This work presents a feasibility study of a new hydrodynamic code that employs graphics processing units together with a general MUSTA-FORCE algorithm (Multi-Stage Riemann Algorithm – First-Order Centred Scheme) to deliver a high-performance yet universal tool for event-by-event hydrodynamic simulations. We also investigate the performance of selected slope limiters that reduce the amount of numeric oscillations and diffusion in the presence of strong discontinuities and shock waves. The numerical results are compared to the exact solutions to assess the code’s accuracy.

References

[1] Gourgoulhon E., An introduction to relativistic hydrodynamics, EAS Publications Series, vol. 21, pp. 43–79, 2006.10.1051/eas:2006106Search in Google Scholar

[2] Huovinen P. and Ruuskanen P. V., Hydrodynamic models for heavy ion collisions, Ann. Rev. Nucl. Part. Sci. 56 (2006), 163–206.10.1146/annurev.nucl.54.070103.181236Search in Google Scholar

[3] Schneider V., Katscher U., Rischke D. H., Waldhauser B., Maruhn J. A. and Munz C.-D., New algorithm for ultra-relativistic numerical hydrodynamics, J. Comput. Phys. 105 (1993), pp. 92–107.10.1006/jcph.1993.1056Search in Google Scholar

[4] Balsara D. S., Riemann solver for relativistic hydrodynamics, J. Comput. Phys. 114 (1994), pp. 284–297.10.1006/jcph.1994.1167Search in Google Scholar

[5] Cheng H., Yang H. and Zhang Y., Riemann problem for the Chaplygin Euler equations of compressible fluid flow, Int. J. Nonlinear Sci. Numer. Simul. 11 (2010), pp. 985–992.10.1515/IJNSNS.2010.11.11.985Search in Google Scholar

[6] Akamatsu Y., Inutsuka S., Nonaka C. and Takamoto M., A new scheme of casual viscous hydrodynamics for relativistic heavy-ion collisions: a Riemann solver for quark-gluon plasma, J. Comput. Phys. 256 (2014), pp. 34-54.10.1016/j.jcp.2013.08.047Search in Google Scholar

[7] Karpenko I. A., Huovinen P. and Bleicher M., A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions, Comput. Phys. Commun. 185 (2014), pp. 3016–3027.10.1016/j.cpc.2014.07.010Search in Google Scholar

[8] Tachibana Y. and Hirano T., Momentum transport away from a jet in an expanding nuclear medium, Phys. Rev. C90 (2014), pp. 021902.10.1103/PhysRevC.90.021902Search in Google Scholar

[9] Bożek P., Flow and interferometry in (3 + 1)-dimensional viscous hydrodynamics, Phys. Rev. C. 85 (2012), pp. 034901–034909.10.1103/PhysRevC.85.034901Search in Google Scholar

[10] Akkelin S. V., Hama Y., Karpenko Iu. A. and Sinyukov Yu. M., Hydro-kinetic approach to relativistic heavy ion collisions, Phys. Rev. C. 78 (2008), pp. 034906–034920.10.1103/PhysRevC.78.034906Search in Google Scholar

[11] Sagert I., Bauer W., Colbry D., Howell J., Pickett R., Staber A. and Strother T., Hydrodynamic shock wave studies within a kinetic Monte Carlo approach, J. Comput. Phys. 266 (2014), pp. 191–213.10.1016/j.jcp.2014.02.019Search in Google Scholar

[12] Gerhard J., Lindenstruth V. and Bleicher M., Relativistic hydrodynamics on graphic cards, Comput. Phys. Commun. 184 (2013), pp. 311–319.10.1016/j.cpc.2012.09.013Search in Google Scholar

[13] Boris J. P. and Book D. L., Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11 (1973), pp. 38–69.10.1016/0021-9991(73)90147-2Search in Google Scholar

[14] Toro E. F., Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations, Isaac Newton Institute for Mathematical Sciences Preprint Series NI03037-NPA, University of Cambridge, UK, 2003.Search in Google Scholar

[15] Toro E. F., MUSTA: a multi-stage numerical flux, Appl. Numer. Math. 56 (2006), pp. 1464–1479.10.1016/j.apnum.2006.03.022Search in Google Scholar

[16] Cygert S., Porter-Sobieraj J., Kikola D., Sikorski J. and Slodkowski M., Towards an efficient multi-stage Riemann solver for nuclear physics simulations, in: Science Computer and Systems Information (FedCSIS), 2013 Federated Conference on, 2013, pp. 441–446.Search in Google Scholar

[17] Miller M. L., Reygers K., Sanders S. J. and Steinberg P., Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007), pp. 205–243.10.1146/annurev.nucl.57.090506.123020Search in Google Scholar

[18] Eskola K. J., Niemi H. and Ruuskanen P. V., Elliptic flow from pQCD + saturation + hydro model, J. Phys. G35 (2008).Search in Google Scholar

[19] Magas V. K., Csernai L. P. and Strottman D., Effective string rope model for the initial stages of ultra-relativistic heavy ion collisions, Nuclear Phys. A. 712 (2002), pp. 167–204.10.1016/S0375-9474(02)01073-4Search in Google Scholar

[20] Alver B., Baker M., Loizides C. and Steinberg P., The PHOBOS Glauber Monte Carlo, 2008, arXiv:0805.4411.Search in Google Scholar

[21] Broniowski W., Rybczynski M. and Bozek P., GLISSANDO: Glauber initial-state simulation and more, Comput. Phys. Commun. 180 (2009), pp. 69–83.10.1016/j.cpc.2008.07.016Search in Google Scholar

[22] Rybczynski M., Stefanek G., Broniowski W. and Bozek P., GLISSANDO 2: Glauber initial-state simulation and more..., ver. 2, Comput. Phys. Commun. 185 (2014), pp. 1759-1772.10.1016/j.cpc.2014.02.016Search in Google Scholar

[23] Drescher H. J., Ostapchenko S., Pierog T. and Werner K., Initial condition for QGP evolution from NEXUS, Phys. Rev. C. 65 (2002), 054902.10.1103/PhysRevC.65.054902Search in Google Scholar

[24] R. Derradi de Souza, J. Takahashi and T. Kodama, Effects of initial state fluctuations in the final state elliptic flow measurements using the NeXSPheRIO model, Phys. Rev. C85 (2012), pp. 054909.10.1103/PhysRevC.85.054909Search in Google Scholar

[25] Pierog T., Iu. Karpenko, S. Porteboeuf and K. Werner, New developments of EPOS 2, 2010, arXiv:1011.3748.Search in Google Scholar

[26] Bass S. A., Belkacem M., Bleicher M., Brandstetter M., Bravina L. et al. Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41 (1998), pp. 255–369.10.1016/S0146-6410(98)00058-1Search in Google Scholar

[27] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 1999.10.1007/978-3-662-03915-1Search in Google Scholar

[28] Toro E. F. and Titarev V. A., MUSTA fluxes for systems of conservation laws, J. Comput. Phys., 216 (2006), pp. 403–429.10.1016/j.jcp.2005.12.012Search in Google Scholar

[29] Constantinescu E. and Sandu A., Explicit time stepping methods with high stage order and monotonicity properties, in: Proceedings of the 9th International Conference on Science Computational, pp. 293–301, 2009.10.1007/978-3-642-01973-9_33Search in Google Scholar

[30] Harten A. and Osher S., Uniformly high-order accurate nonoscillatory schemes, SIAM J. Numer. Anal. (1987), pp. 279–309.10.1007/978-3-642-60543-7_11Search in Google Scholar

[31] Berger M., Murman S. M. and Aftosmis M. J., Analysis of slope limiters on irregular grids, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.10.2514/6.2005-490Search in Google Scholar

[32] Sweby P. K. and Baines M. J., Convergence of Roe’s scheme for the general non-linear scalar wave equation, Reading University Numerical Analysis Report, 1981.10.1016/0021-9991(84)90087-1Search in Google Scholar

[33] Roe P. L., Some contributions to the modelling of discontinuous flows, in: Proceedings of the AMS/SIAM Seminar, San Diego, 1983.Search in Google Scholar

[34] van Albada G. D., van Leer B. and Roberts W. W., A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys.108 (1982), pp. 76–84.10.1007/978-3-642-60543-7_6Search in Google Scholar

[35] van Leer B., Towards the ultimate conservative difference scheme, Monotonicity and conservation combined in a second order scheme, J. Comp. Phys. 14 (1974), pp. 361–370.10.1006/jcph.1997.5704Search in Google Scholar

[36] Rischke D. H., Fluid dynamics for relativistic nuclear collisions, in: Hadrons in Dense Matter and Hadrosynthesis, Springer Verlag, 1999.10.1007/BFb0107310Search in Google Scholar

[37] NVIDIA Corporation: NVIDIA CUDA Programming Guide Version 9.0, 2017. Available from: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.Search in Google Scholar

[38] Thompson K. W., The special relativistic shock tube, J. Fluid Mech. 171 (1986), pp. 365–375.10.1017/S0022112086001489Search in Google Scholar

[39] Martí J. M. and Müller E., Numerical hydrodynamics in special relativity, Living Rev. Relativ. 6, 2003.10.12942/lrr-2003-7Search in Google Scholar PubMed PubMed Central

[40] Chojnacki M., Florkowski W. and Csörgö T., Formation of Hubble-like flow in little bangs, Phys. Rev. C. 71 (2005), pp. 044902.10.1103/PhysRevC.71.044902Search in Google Scholar

[41] Sinyukov Yu. M. and Iu. A. Karpenko, Quasi-inertial ellipsoidal flows in relativistic hydrodynamics, 2005, arXiv:nucl-th/0505041.Search in Google Scholar

[42] Sinyukov Y. M. and Karpenko I. A., Ellipsoidal flows in relativistic hydrodynamics of finite systems, Acta Physica Hungarica Series A, Heavy Ion Phys.25 (2006), pp. 141–147.10.1556/APH.25.2006.1.13Search in Google Scholar

[43] Blakely P. M., Nikiforakis N. and Henshaw W. D., Assessment of the MUSTA approach for numerical relativistic hydrodynamics, Astron. Astrophys. 575 (2015), A102.10.1051/0004-6361/201425182Search in Google Scholar

Received: 2016-9-9
Accepted: 2017-6-29
Published Online: 2017-12-16
Published in Print: 2018-2-23

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0131/html?lang=en
Scroll to top button