Home Application of Fractional Techniques in the Analysis of Forest Fires
Article
Licensed
Unlicensed Requires Authentication

Application of Fractional Techniques in the Analysis of Forest Fires

  • António M. Lopes EMAIL logo and J.A. Tenreiro Machado
Published/Copyright: November 11, 2016

Abstract:

In this paper we study the global behavior of forest fires (FFs) in the Continental United States for the period 1984–2013. The data are obtained from a public domain catalog maintained by the Monitoring Trends in Burn Severity project. First we adopt clustering analysis to reduce the information dimensionality. Then we adopt mathematical tools commonly used in the analysis of dynamical systems, namely fractal dimension, entropy and fractional Fourier transform. The fractional techniques unveil FF patterns embedded in the data.

MSC 2010: 26A33; 65T50; 28A80; 94A17

References

[1] C. M. Bella, Esteban G. Jobbágy, José M. Paruelo and S. Pinnock, Continental fire density patterns in South America, Global Ecol. Biogeogr. 15 (2006), 192–199.10.1111/j.1466-822X.2006.00225.xSearch in Google Scholar

[2] Ross A. Bradstock, Effects of large fires on biodiversity in south-eastern Australia: Disaster or template for diversity? Int. J. Wildland Fire 17 (2009), 809–822.Search in Google Scholar

[3] Chad T. Hanson and Dennis C. Odion, Is fire severity increasing in the Sierra Nevada, California, USA? Int. J. Wildland Fire 23 (2014), 1–8.10.1071/WF13016Search in Google Scholar

[4] Adrián Regos, Manuela D’Amen, Sergi Herrando, Antoine Guisan and Lluís Brotons, Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: Dynamic distribution modelling of an early-successional species – The near-threatened Dartford Warbler (Sylvia undata), J. Ornithol. (2015), 1–12.10.1007/s10336-015-1174-9Search in Google Scholar

[5] Mike Flannigan, Carbon cycle: Fire evolution split by continent, Nat. Geosci 8 (2015), 167–168.10.1038/ngeo2360Search in Google Scholar

[6] Rachel A. Loehman, Elizabeth Reinhardt and Karin L. Riley, Wildland fire emissions, carbon, and climate: Seeing the forest and the trees – A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems, Forest Ecol Manage 317 (2014), 9–19.10.1016/j.foreco.2013.04.014Search in Google Scholar

[7] António M. Lopes and J. A. Tenreiro Machado, Analysis of temperature time-series: Embedding dynamics into the MDS method, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 851–871.10.1016/j.cnsns.2013.08.031Search in Google Scholar

[8] William T. Sommers, Rachel A. Loehman and Colin C. Hardy, Wildland fire emissions, carbon, and climate: Science overview and knowledge needs, For. Ecol. Manage. 317 (2014), 1–8.10.1016/j.foreco.2013.12.014Search in Google Scholar

[9] Thomas Zumbrunnen, Gianni B. Pezzatti, Patricia Menéndez, Harald Bugmann, Matthias Bürgi and Marco Conedera, Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland, For. Ecol. Manage. 261 (2011), 2188–2199.10.1016/j.foreco.2010.10.009Search in Google Scholar

[10] Anabela Carvalho, Alexandra Monteiro, Mike Flannigan, Silvina Solman, Ana Isabel Miranda and Carlos Borrego, Forest fires in a changing climate and their impacts on air quality, Atmos. Environ. 45 (2011), 5545–5553.10.1016/j.atmosenv.2011.05.010Search in Google Scholar

[11] Markus Reichstein, Michael Bahn, Philippe Ciais, Dorothea Frank, Miguel D. Mahecha, Sonia I. Seneviratne, Jakob Zscheischler, Christian Beer, Nina Buchmann, David C. Frank et al., Climate extremes and the carbon cycle, Nature 500 (2013), 287–295.10.1038/nature12350Search in Google Scholar PubMed

[12] Aiguo Dai, Drought under global warming: A review, Wiley Interdiscip. Rev. Climate Change 2 (2011), 45–65.10.1002/wcc.81Search in Google Scholar

[13] Ryan Kelly, Melissa L. Chipman, Philip E. Higuera, Ivanka Stefanova, Linda B. Brubaker and Feng Sheng Hu, Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, Proc. National Acad. Sci. 110 (2013), 13055–13060.10.1073/pnas.1305069110Search in Google Scholar PubMed PubMed Central

[14] Merritt R. Turetsky, Evan S. Kane, Jennifer W. Harden, Roger D. Ottmar, Kristen L. Manies, Elizabeth Hoy and Eric S. Kasischke, Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands, Nat. Geosci. 4 (2011), 27–31.10.1038/ngeo1027Search in Google Scholar

[15] Jesús San-Miguel-Ayanz, Ernst Schulte, Guido Schmuck and Andrea Camia, The European Forest Fire Information System in the context of environmental policies of the European Union, Forest Policy Econ. 29 (2013), 19–25.10.1016/j.forpol.2011.08.012Search in Google Scholar

[16] R. Zamora, J. R. Molina-Martínez, M. A. Herrera and F. Rodríguez y Silva, A model for wildfire prevention planning in game resources, Ecol. Modell. 221 (2010), 19–26.10.1016/j.ecolmodel.2009.07.010Search in Google Scholar

[17] J. A. Machado and António M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calculus Appl. Anal. 18 (2015), 459–478.10.1515/fca-2015-0029Search in Google Scholar

[18] J. A. Tenreiro Machado and António M. Lopes, The persistence of memory, Nonlinear Dyn. 79 (2015), 63–82.10.1007/s11071-014-1645-1Search in Google Scholar

[19] J. A. Tenreiro Machado, Carla M. A. Pinto and A. Mendes Lopes, A review on the characterization of signals and systems by power law distributions, Signal Process. 107 (2015), 246–253.10.1016/j.sigpro.2014.03.003Search in Google Scholar

[20] J. A. T Machado and A.M. Lopes, Complex dynamics of forest fires, Math. Prob. Eng. 2014 (2014), 8.Search in Google Scholar

[21] Weiguo Song, Jian Wang, Kohyu Satoh and Weicheng Fan, Three types of power-law distribution of forest fires in Japan, Ecol. Modell. 196 (2006), 527–532.10.1016/j.ecolmodel.2006.02.033Search in Google Scholar

[22] Donald L. Turcotte and Bruce D. Malamud, Landslides, forest fires, and earthquakes: Examples of self-organized critical behavior, Phys. A Stat. Mech. Appl. 340 (2004), 580–589.10.1016/j.physa.2004.05.009Search in Google Scholar

[23] Per Bak, Kan Chen and Chao Tang, A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147 (1990), 297–300.10.1016/0375-9601(90)90451-SSearch in Google Scholar

[24] Paul Barford, Azer Bestavros, Adam Bradley and Mark Crovella, Changes in web client access patterns: Characteristics and caching implications, World Wide Web 2 (1999), 15–28.10.1023/A:1019236319752Search in Google Scholar

[25] Barbara Drossel and Franz Schwabl, Self-organized critical forest-fire model, Phys. Rev. Lett. 69 (1992), 1629.10.1103/PhysRevLett.69.1629Search in Google Scholar

[26] Bruce D. Malamud, Gleb Morein and Donald L. Turcotte, Forest fires: An example of self-organized critical behavior, Science 281 (1998), 1840–1842.10.1126/science.281.5384.1840Search in Google Scholar

[27] William J. Reed and Kevin S. McKelvey, Power-law behaviour and parametric models for the size-distribution of forest fires, Ecol. Modell. 150 (2002), 239–254.10.1016/S0304-3800(01)00483-5Search in Google Scholar

[28] Luciano Telesca, Giuseppe Amatulli, Rosa Lasaponara, Michele Lovallo and Adriano Santulli, Time-scaling properties in forest-fire sequences observed in Gargano area (southern Italy), Ecol. Modell. 185 (2005), 531–544.10.1016/j.ecolmodel.2005.01.009Search in Google Scholar

[29] Luciano Telesca, Giuseppe Amatucci, Rosa Lasaponara, Michele Lovallo and Maria Joao Rodrigues, Space-time fractal properties of the forest-fire series in central Italy, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), 1326–1333.10.1016/j.cnsns.2005.12.003Search in Google Scholar

[30] Imogen Fletcher, Luiz Aragão, André Lima, Yosio Shimabukuro and P. Friedlingstein, Fractal properties of forest fires in Amazonia as a basis for modelling pan-tropical burnt area, Biogeosciences 11 (2014), 1449–1459.10.5194/bg-11-1449-2014Search in Google Scholar

[31] Alan J. Tepley and Thomas Thorstein Veblen, Spatiotemporal fire dynamics in mixed-conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA, Ecological Monographs (2015).10.1890/14-1496.1Search in Google Scholar

[32] António M. Lopes and J. A. Tenreiro Machado, Dynamic analysis and pattern visualization of forest fires, PLoS ONE 9 (2014), e105465.10.1371/journal.pone.0105465Search in Google Scholar PubMed PubMed Central

[33] António M. Lopes and José A. Tenreiro Machado, State space analysis of forest fires, J. Vib. Control 22 (2016), 2153–2164.10.1177/1077546314565687Search in Google Scholar

[34] Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle and Stephen Howard, Project for monitoring trends in burn severity, Fire Ecol. 3 (2007), 3–21.10.4996/fireecology.0301003Search in Google Scholar

[35] Anil K Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31 (2010), 651–666.10.1016/j.patrec.2009.09.011Search in Google Scholar

[36] Franz Aurenhammer, Voronoi diagrams – A survey of a fundamental geometric data structure, ACM Comput. Surveys (CSUR) 23 (1991), 345–405.10.1145/116873.116880Search in Google Scholar

[37] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara and Sung Nok Chiu, Spatial tessellations: Concepts and applications of Voronoi diagrams, 501, John Wiley & Sons, 2009.Search in Google Scholar

[38] Benoıt B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967), 636–638.10.1126/science.156.3775.636Search in Google Scholar PubMed

[39] António M. Lopes and J. A. Tenreiro Machado, Modeling vegetable fractals by means of fractional-order equations, J Vib. Control (2015), 1077546315581228.Search in Google Scholar

[40] Mark E. J. Newman, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46 (2005), 323–351.10.1080/00107510500052444Search in Google Scholar

[41] Carla M. A. Pinto, A. Mendes Lopes and J. A. Tenreiro Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3558–3578.10.1016/j.cnsns.2012.01.013Search in Google Scholar

[42] J. A. Tenreiro Machado, Carla Pinto and A. Mendes Lopes, Power law and entropy analysis of catastrophic phenomena, Math. Prob. Eng. 2013 (2013).10.1155/2013/562320Search in Google Scholar

[43] Carla M. A. Pinto, A. Mendes Lopes and J. A. Tenreiro Machado, Double power laws, fractals and self-similarity, Appl. Math. Modell. 38 (2014), 4019–4026.10.1016/j.apm.2014.01.012Search in Google Scholar

[44] M. V. Berry, Diffractals, J. Phys. Math. General 12 (1979), 781–797.10.1088/0305-4470/12/6/008Search in Google Scholar

[45] J. Fleckinger-Pelle and M.L. Lapidus, Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacien, Comptes rendus de l’Académie des sciences. Série 1, Mathématique 306 (1988), 171–175.Search in Google Scholar

[46] M. Schroeder, Fractals, Chaos, power laws: Minutes from an infinite paradise, W.H. Freeman, New York, 1991.10.1063/1.2810323Search in Google Scholar

[47] Aleksandr Iakovlevich Khinchin, Mathematical foundations of information theory, 434, Courier Dover Publications, 1957.Search in Google Scholar

[48] Constantino Tsallis, Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52 (1988), 479–487.10.1007/BF01016429Search in Google Scholar

[49] Marcelo R Ubriaco, Entropies based on fractional calculus, Phys. Lett. A 373 (2009), 2516–2519.10.1016/j.physleta.2009.05.026Search in Google Scholar

[50] Giorgio Kaniadakis, Maximum entropy principle and power-law tailed distributions, The Eur. Phys. J. B - Condens. Matter Complex Syst. 70 (2009), 3–13.10.1140/epjb/e2009-00161-0Search in Google Scholar

[51] Bhu D. Sharma and Inder J. Taneja, Entropy of type (!, ") and other generalized measures in information theory, Metrika 22 (1975), 205–215.10.1007/BF01899728Search in Google Scholar

[52] Bhudev D. Sharma and Dharam P. Mittal, New nonadditive measures of entropy for discrete probability distributions, J. Math. Sci. 10 (1975), 28–40.Search in Google Scholar

[53] Somayeh Asgarani, A set of new three-parameter entropies in terms of a generalized incomplete Gamma function, Phys. A Stat. Mech. Appl. 392 (2013), 1972–1976.10.1016/j.physa.2012.12.018Search in Google Scholar

[54] Somayeh Asgarani and Behrouz Mirza, Two-parameter entropies, Sk,r, and their dualities, Phys. A Stat. Mech. Appl. 417 (2015), 185–192.10.1016/j.physa.2014.09.045Search in Google Scholar

[55] Christian Beck, Generalised information and entropy measures in physics, Contemp. Phys. 50 (2009), 495–510.10.1080/00107510902823517Search in Google Scholar

[56] P. K. Bhatia, On certainty and generalized information measures, Int. J. Contemp. Math. Sci. 5 (2010), 1035–1043.Search in Google Scholar

[57] Tatsuaki Wada and Hiroki Suyari, A two-parameter generalization of Shannon–Khinchin axioms and the uniqueness theorem, Phys. Lett. A 368 (2007), 199–205.10.1016/j.physleta.2007.04.009Search in Google Scholar

[58] Dumitru Baleanu, Kai Diethelm, Enrico Scalas and Juan J Trujillo, Models and numerical methods, 3, World Scientific, 2012.Search in Google Scholar

[59] Clara Mihaela Ionescu, The human respiratory system: An analysis of the interplay between anatomy, structure, breathing and fractal dynamics, Springer Science & Business Media, 2013.Search in Google Scholar

[60] Miller Kenneth and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.Search in Google Scholar

[61] Ying Luo and YangQuan Chen, Fractional order motion controls, John Wiley & Sons, 2012.10.1002/9781118387726Search in Google Scholar

[62] Francesco Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010.10.1142/p614Search in Google Scholar

[63] Ivo Petras, Fractional-order nonlinear systems: Modeling, analysis and simulation, Springer Science & Business Media, 2011.10.1007/978-3-642-18101-6Search in Google Scholar

[64] António M Lopes and JT Machado, Fractional order models of leaves, J. Vib. Control 20 (2014), 998–1008.10.1177/1077546312473323Search in Google Scholar

[65] José Tenreiro Machado, Fractional order generalized information, Entropy 16 (2014), 2350–2361.10.3390/e16042350Search in Google Scholar

[66] Duarte Valério, Juan J. Trujillo, Margarita Rivero, J. A. Tenreiro Machado and Dumitru Baleanu, Fractional calculus: A survey of useful formulas, Eur. Phys. J. Spec. Topics 222 (2013), 1827–1846.10.1140/epjst/e2013-01967-ySearch in Google Scholar

[67] J Machado, António Lopes, Fernando Duarte, Manuel Ortigueira and Raul Rato, Rhapsody in fractional, Fract. Calculus Appl. Anal. 17 (2014), 1188–1214.10.2478/s13540-014-0206-0Search in Google Scholar

[68] J. Tenreiro Machado, Fernando B. Duarte and Gonçalo Monteiro Duarte, Analysis of financial data series using fractional Fourier transform and multidimensional scaling, Nonlinear Dyn. 65 (2011), 235–245.10.1007/s11071-010-9885-1Search in Google Scholar

[69] Haldun M. Ozaktas, Zeev Zalevsky and M. Alper Kutay, The fractional Fourier transform, Wiley, Chichester, 2001.10.23919/ECC.2001.7076127Search in Google Scholar

[70] Victor Namias, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math. 25 (1980), 241–265.10.1093/imamat/25.3.241Search in Google Scholar

[71] Luis B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42 (1994), 3084–3091.10.1109/78.330368Search in Google Scholar

[72] Naveen Kumar Nishchal, Joby Joseph and Kehar Singh, Securing information using fractional Fourier transform in digital holography, Opt. Commun. 235 (2004), 253–259.10.1016/j.optcom.2004.02.052Search in Google Scholar

[73] Adhemar Bultheel and Héctor E Martınez Sulbaran, Computation of the fractional Fourier transform, Appl. Comput. Harmonic Anal. 16 (2004), 182–202.10.1016/j.acha.2004.02.001Search in Google Scholar

[74] Tadeusz Cali´nski and Jerzy Harabasz, A dendrite method for cluster analysis, Commun. Stat. Theory Methods 3 (1974), 1–27.10.1080/03610927408827109Search in Google Scholar

[75] David L. Davies and Donald W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell. (1979), 224–227.10.1109/TPAMI.1979.4766909Search in Google Scholar

[76] Peter J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math. 20 (1987), 53–65.10.1016/0377-0427(87)90125-7Search in Google Scholar

[77] António M. Lopes and J. A. Tenreiro Machado, Entropy analysis of industrial accident data series, J. Comput. Nonlinear Dyn. 11 (2016), 031006.10.1115/1.4031195Search in Google Scholar

[78] António M. Lopes and J. A. Tenreiro Machado, Integer and fractional-order entropy analysis of earthquake data series, Nonlinear Dyn. 84 (2016), 79–90.10.1007/s11071-015-2231-xSearch in Google Scholar

[79] J. A. Tenreiro Machado, António M. Lopes and Alexandra M. Galhano, Multidimensional scaling visualization using parametric similarity indices, Entropy 17 (2015), 1775–1794.10.3390/e17041775Search in Google Scholar

Received: 2016-2-12
Accepted: 2016-10-7
Published Online: 2016-11-11
Published in Print: 2016-12-1

©2016 by De Gruyter

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0026/html
Scroll to top button