Biologically synthesized zinc oxide nanoparticles from Turbinaria conoides: characterization and biomedical efficacy
-
Mishel Francis
, Aravinth Annamalai , Prabhu Kolandhasamy, Nandhini Selvaraj
, Pavithra Senthilkumar , Ramachandran Vinayagam and Saroja Ramasubbu Sivakumar
Abstract
The present study focused on the green synthesis, comprehensive characterisation, and biological activity of zinc oxide nanoparticles (ZnO NPs) from brown seaweed Turbinaria conoides, which exhibited significant antibacterial, antioxidant, anti-inflammatory, and cytotoxic effects. The biosynthesised ZnO NPs mediated by T. conoides were systematically characterised through a suite of analytical techniques, including UV–visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and dynamic light scattering. The scanning electron microscopy confirmed the size range of 70–190 nm. The antibacterial efficacy of ZnO NPs mediated by T. conoides was evaluated against five different human bacterial pathogens. The highest zone of inhibition (19 mm) was observed against MRSA, while Mycobacterium smegmatis exhibited the lowest zone of inhibition (9.0 mm) at a concentration of 100 μg mL−1. The ZnO NPs synthesised from T. conoides were evaluated using DPPH and ABTS assays, revealing a dose-dependent increase in scavenging activity. For anti-inflammatory assessment, the protein denaturation assay confirmed an inhibition range from 32.55 ± 0.2 (50 μg mL−1) to 54.9 ± 0.4 (250 μg mL−1). Similarly, in the anti-lipoxygenase assay, inhibition ranges from 41.96 ± 1.06 (50 μg mL−1) to 62.5 ± 1.02 (250 μg mL−1). Moreover, the MTT assay exposed cytotoxic effects of the A549 cell line with an IC50 value of 84.00 μg mL−1. The present study findings suggested that T. conoides mediated ZnO NPs hold significant potential for sustainable biomedical applications.
Acknowledgments
The authors are thankful to Bharathidasan University.
-
Research ethics: The authors claim that there are no ethical issues involved in this research.
-
Informed consent: Not Applicable.
-
Author contributions: M.F: Resources, Methodology, Writing of the Original draft preparation. A.A: Methodology, conceptualization, visualization. N.S: formal analysis and data curation, software. P.K: Writing – review & editing, visualization. R.V: Investigation, data curation, Writing-review & editing. P.S: formal analysis, data curation, software, visualization. Saroja Ramasubbu Sivakuma: Supervision, conceptualization.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no competing interests.
-
Research funding: Not applicable.
-
Data availability: The data that support the findings of the study are available from the corresponding author upon responsible request.
References
1. El-Sheekh, M. M.; AlKafaas, S. S.; Rady, H. A.; Abdelmoaty, B. E.; Bedair, H. M.; Ahmed, A. A.; El-Saadony, M. T.; AbuQamar, S. F.; El-Tarabily, K. A. How Synthesis of Algal Nanoparticles Affects Cancer Therapy? – a Complete Review of the Literature. Int. J. Nanomedicine. 2023, 18, 6601–6638. https://doi.org/10.2147/IJN.S423171.Search in Google Scholar PubMed PubMed Central
2. Ponnan, A.; Ramu, K.; Marudhamuthu, M.; Marimuthu, R.; Siva, K.; Kadarkarai, M. Antibacterial, Antioxidant, and Anticancer Properties of Turbinaria conoides (J. Agardh) Kuetz. Clin. Phytosci. 2017, 3, 5. https://doi.org/10.1186/s40816-017-0042-y.Search in Google Scholar
3. Saddick, S.; Afifi, M.; Abu Zinada, O. A. Effect of Zinc Nanoparticles on Oxidative Stress-Related Genes and Antioxidant Enzymes Activity in the Brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 2017, 24 (7), 1672–1678. https://doi.org/10.1016/j.sjbs.2015.10.021.Search in Google Scholar PubMed PubMed Central
4. Bachheti, R. K.; Abate, L.; Bachheti, A.; Madhusudhan, A.; Husen, A. Algae-, Fungi-, and Yeast-Mediated Biological Synthesis of Nanoparticles and their Various Biomedical Applications. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Elsevier: Mexico, 2021, pp 701–734.10.1016/B978-0-12-821938-6.00022-0Search in Google Scholar
5. Abotaleb, S. I.; Gheda, S. F.; Allam, N. G.; El-Shatoury, E. H.; Cotas, J.; Pereira, L.; Saeed, A.M. Biosynthesis of Zinc Oxide Nanoparticles Using Seaweed: Exploring their Therapeutic Potentials. Appl. Sci. 2024, 14, 7069. https://doi.org/10.3390/app14167069.Search in Google Scholar
6. El-Saadony, M. T.; Fang, G.; Yan, S.; Alkafaas, S. S.; El Nasharty, M. A.; Khedr, S. A.; Hussie, N. A. M.; Ghosh, S.; Dladla, M.; Elkafas, S. S.; Ibrahim, E. H.; Salem, H. M.; Mosa, W. F. A.; Ahmed, A. E.; Mohammed, D. M.; Korma, S. A.; El-Tarabily, M. K.; Saad, A. M.; El-Tarabily, K. A.; AbuQamar, S. F. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications-A Review. Int J Nanomedicine 2024, 19, 12889–12937. https://doi.org/10.2147/IJN.S487188.Search in Google Scholar PubMed PubMed Central
7. Pandimurugan, S.; Thambidurai, S. UV Protection and Antibacterial Properties of seaweed-capped ZnO Nanoparticles Coated Cotton Fabrics. Int. J. Biol. Macromol. 2017, 105, 788–795. https://doi.org/10.1016/j.ijbiomac.2017.07.097.Search in Google Scholar PubMed
8. Kasivelu, G.; Selvaraj, T. Green Synthesis of Metal and Metal Oxide Nanomaterials Using Seaweed Bioresources. In Microbial Nanotechnology; CRC Press: Boca Raton, Florida, USA, 2020; pp. 66–86.10.4324/9780429276330-4Search in Google Scholar
9. Singh, M.; Lee, K. E.; Vinayagam, R.; Kang, S. G. Antioxidant and Antibacterial Profiling of Pomegranate-Pericarp Extract Functionalized-Zinc Oxide Nanocomposite. Biotechnol. Bioprocess Eng. 2021, 26, 728–737. https://doi.org/10.1007/s12257-021-0211-1.Search in Google Scholar PubMed PubMed Central
10. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.Search in Google Scholar PubMed
11. Venkatraman, A.; Yahoob, S. A. M.; Nagarajan, Y.; Harikrishnan, S.; Vasudevan, S.; Murugasamy, T. Pharmacological Activity of Biosynthesized Gold Nanoparticles from Brown Algae-Seaweed Turbinaria conoides. Nano World J. 2018, 4, 17–22. https://doi.org/10.17756/nwj.2018-055.Search in Google Scholar
12. Eshwarappa, R. S. B.; Ramachandra, Y. L.; Subaramaihha, S. R.; Subbaiah, S. G. P.; Austin, R. S.; Dhananjaya, B. L. Anti-Lipoxygenase Activity of Leaf Gall Extracts of Terminalia chebula (Gaertn.) Retz. (Combretaceae). Pharmacogn. Res. 2016, 8, 78. https://doi.org/10.4103/0974-8490.171103.Search in Google Scholar PubMed PubMed Central
13. Solomon, J.; Palanisamy, S.; Ravichandran, A.; Rajasekar, P.; Kannan, S. M.; Malaikozhundan, B.; Prabhu, N. M.; You, S. Characterization and Investigation of Biofabricated ZnO Nanoparticles Using Caulerpa sertularioides for Antioxidant and Antibacterial Purposes. Inorg. Chem. Commun. 2024, 165, 112549. https://doi.org/10.1016/j.inoche.2024.112549.Search in Google Scholar
14. Hasan, E. A.; El-Hashash, M. A.; Zahran, M. K.; El-Rafie, H. M. Comparative Study of Chemical Composition, Antioxidant, and Anticancer Activities of Both Turbinaria decurrens Methanol Extract and its Biosynthesized Gold Nanoparticles. J. Drug Deliv. Sci. Tec. 2022, 67, 103005. https://doi.org/10.1016/j.jddst.2021.103005.Search in Google Scholar
15. Viswanathan, S.; Palaniyandi, T.; Shanmugam, R.; Moovendhan, M.; Pandi, M.; Wahab, M. R. A.; Baskar, G.; Rajendran, B. K.; Sivaji, A. Synthesis, Characterization, Cytotoxicity, and Antimicrobial Studies of Green Synthesized Silver Nanoparticles Using Red Seaweed Champia parvula. Biomass Convers. Biorefin. 2024, 14, 7387–7400. https://doi.org/10.1007/s13399-023-04384-z.Search in Google Scholar
16. Goyal, R.; Kumar, M.; Mallick, M. A.; Nitin, M.; Agrawal, R.; Yadav, A. K.; Solanki, P. Nano-Informatics Approach to Unravel the Intrinsic Interaction of Catharanthus roseus Fabricated Zinc Oxide Nanoparticles with Vindoline to Combat Diabetes. ChemistrySelect 2024, 9, e202402777. https://doi.org/10.1002/slct.202402777.Search in Google Scholar
17. Mahajan, M.; Kumar, S.; Gaur, J.; Kaushal, S.; Dalal, J.; Singh, G.; Ahlawat, D. S. Green Synthesis of ZnO Nanoparticles Using Justicia adhatoda for Photocatalytic Degradation of Malachite Green and Reduction of 4-Nitrophenol. RSC Adv. 2025, 15, 2958–2980. https://doi.org/10.1039/d4ra08632e. Erratum in: RSC Adv. 2025; 12;15(10):7843. https://doi.org/10.1039/d5ra90020d.Search in Google Scholar PubMed PubMed Central
18. Raajshree, R. K.; Brindha, D. In vivo Anticancer Activity of Biosynthesized Zinc Oxide Nanoparticle Using Turbinaria conoides on a Dalton’s Lymphoma Ascites Mice Model. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 2. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025086.Search in Google Scholar PubMed
19. Chaudhary, R.; Nawaz, K.; Khan, A. K.; Hano, C.; Abbasi, B. H.; Anjum, S. An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and their Biomedical Applications. Biomolecules 2020, 10, 1498. https://doi.org/10.3390/biom10111498.Search in Google Scholar PubMed PubMed Central
20. Hamouda, R. A.; Alharbi, A. A.; Al-Tuwaijri, M. M.; Makharita, R. R. The Antibacterial Activities and Characterizations of Biosynthesized Zinc Oxide Nanoparticles, and their Coated with Alginate Derived from Fucus vesiculosus. Polymers 2023, 15 (10), 2335. https://doi.org/10.3390/polym15102335.Search in Google Scholar PubMed PubMed Central
21. Shera, S. S.; Banik, R. M. Algal Nanoparticles: Synthesis and Characterization. In Bioprospecting Algae for Nanosized Materials.; Springer Nature: India. Nanotechnology in the Life Sciences. 2022; pp. 25–69.10.1007/978-3-030-81557-8_2Search in Google Scholar
22. Chandramohan, S.; Priya, R.; Guguloth, S. K.; Manikandan, E.; Rukkumani, R. Multifaceted Investigation of Zinc Oxide Nanoparticles Synthesized from Vernonia elaeagnifolia Leaf Extract: Characterization, Antibacterial, Antioxidant, Cytotoxicity, and DNA Binding Activities. Inorg. Chem. Commun. 2025, 177, 114384. https://doi.org/10.1016/j.inoche.2025.114384.Search in Google Scholar
23. Kedi, P. B. E.; Meva, F. E.; Kotsedi, L.; Nguemfo, E. L.; Zangueu, C. B.; Ntoumba, A. A.; Maaza, M.; Dongmo, A. B. Eco-Friendly Synthesis, Characterization, in vitro and in vivo Anti-inflammatory Activity of Silver nanoparticle-mediated Selaginella myosurus aqueous Extract. Int J Nanomedicine 2018, 13, 8537–8548. https://doi.org/10.2147/IJN.S174530.Search in Google Scholar PubMed PubMed Central
24. Majithia, M.; Maithili, P.; Barretto, D. A. Biocompatible, Green Synthesized Nanomaterials for Therapeutic Applications. In Progress in Biochemistry and Biotechnology; Pranay, M., Milind, N. Eds.; Academic Press: India. Advances in Nano and Biochemistry, 2023, 285–367.10.1016/B978-0-323-95253-8.00012-7Search in Google Scholar
25. Diab, A. S.; Elsayed, K. N. M.; El-Sherbeeny, A. M.; Al Zoubi, W.; Bellucci, S.; Abukhadra, M. R. Synthesis and Characterization of Turbinaria ornata-Mediated Zn/ZnO Green Nanoparticles as Potential Antioxidant and Anti-diabetic Agent of Enhanced Activity. Front. Mar. Sci. 2024, 11, 1444618. https://doi.org/10.3389/fmars.2024.1444618.Search in Google Scholar
26. Kamaraj, S.K.; Thirumurugan, A.; Dhanabalan, S.S.; Verma, S.K.; Shajahan, S., Eds. Sustainable Green Synthesised Nano-Dimensional Materials for Energy and Environmental Applications; CRC Press: Boca Raton, 2024, 1st ed.; p. 282.10.1201/9781003362241Search in Google Scholar
27. Palaniappan, N.; Balasubramanian, B.; Arunkumar, M.; Pushparaj, K.; Rengasamy, K. R. R.; Maluventhen, V.; Pitchai, M.; Alanazi, J.; Liu, W. C.; Maruthupandian, A. Anticancer, Antioxidant, and Antimicrobial Properties of Solvent Extract of Lobophora variegata through in vitro and in silico Studies with Major Phytoconstituents. Food Biosci 2022, 48, 101822. https://doi.org/10.1016/j.fbio.2022.101822.Search in Google Scholar
28. Ramakrishnan, G.; Razack, S. A.; Ravi, L.; Sahadevan, R. Fabrication of phyco-functionalized Zinc Oxide Nanoparticles and their in vitro Evaluation against Bacteria and Cancer Cell Line. Indian J. Biochem biophys. 2023, 60, 770–778. https://doi.org/10.56042/ijbb.v60i10.397.Search in Google Scholar
29. Chaudhary, S.; Bharadvaja, N. Recent Developments in Phycosynthesis of Zinc Oxide Nanoparticles for Biomedicine and Environmental Applications. Adv.Nat.Sci.: Nanosci. Nanotechnol. 2023, 14 (4), 043001. https://doi.org/10.1088/2043-6262/acf2ef.Search in Google Scholar
30. Marunganathan, V.; Kumar, M. S. K.; Kari, Z. A.; Giri, J.; Shaik, M. R.; Shaik, B.; Guru, A. Marine-Derived κ-Carrageenan-Coated Zinc Oxide Nanoparticles for Targeted Drug Delivery and Apoptosis Induction in Oral Cancer. Mol. Biol. Rep. 2024, 7 (51(1), 89. https://doi.org/10.1007/s11033-023-09146-1.Search in Google Scholar PubMed
31. Loganathan, S.; Manimaran, K.; Mutamimurugan, K.; Prakash, D. G.; Subashini, R. Synthesis of Zinc Oxide Nanoparticles by Pterolobium hexapetalum (Roth) Santapau and Wagh Extract and their Biological Applications. Biomass Conv. Bioref. 2024, 14, 19649–19660. https://doi.org/10.1007/s13399-023-04732-6.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston