Startseite Pore evolution and mechanical properties of carbon fiber laminates subjected to low-velocity impacts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pore evolution and mechanical properties of carbon fiber laminates subjected to low-velocity impacts

  • Zulu Tang , Jun Ding , Hua Xue , Chengxiong Yi , Yixin Luo , Zhenglong Liu EMAIL logo , Jialiang Chen , Chao Yu , Chenglong Lu und Chengji Deng
Veröffentlicht/Copyright: 1. September 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In order to study the effect of impact loading on the porosity within carbon fiber laminates and the effect of porosity on performance under external loading, six different energy gradients (0 J, 6 J, 10 J, 15 J, 20 J, 25 J) were applied to impact the carbon fiber laminates, followed by tensile and compression experiments on the impacted laminates. Various characterization methods, including industrial CT, ultrasonic C-scan, metallographic microscopy, scanning electron microscopy, and mercury intrusion porosimetry, were used to investigate the changes in porosity and their effects on mechanical properties. The study found that impact loading leads to the formation of new porosity between layers, and these pores connect through cracks and coalesce to form larger pores, ultimately resulting in delamination. Under tensile loading, cracks form near the interlaminar and intralaminar porosity, and propagate along the thickness direction and interlaminar direction, respectively, leading to a decrease in the mechanical properties of the laminate. Using ultrasonic A-scan technology, sound attenuation and sound impedance data for the impacted regions of the laminates were obtained, and mathematical models for sound attenuation, sound impedance, and porosity were established. The average errors of the models were 6.6 % and 5.5 %, respectively. Additionally, finite element simulations of the laminate’s impact and tensile experiments were conducted, and tensile strength values for the 0 J, 10 J, and 20 J samples were output. The simulation results showed an accuracy rate of 95.4 %, 97.2 %, and 95.2 %, respectively.


Corresponding author: Zhenglong Liu, State Key Laboratory of Advanced Refractories, Wuhan University of Science and Technology, Wuhan, 430081, China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and consented to its submission to the journal, reviewed all the results and approved the final version of the manuscript. Zulu Tang, Jialiang Chen and Yixing Luo designed the experiment and carried it. Hua Xue, Chenglong Lu and Chengxiong Yi probided the experiment instruments and directed the experiment. Jun Ding, Zhenglong Liu, Chao Yu and Chengji Deng directed the writing and revision of this manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was supported by the Open Fund for The State Key Laboratory of Refractories and Metallurgy (G202407), the Natural Science Foundation of Hubei Province (2023BAB106); the National Natural Science Foundation of China (52402034); the Science and Technology Innovation Team Foundation of Hubei Province (T2023001) and the Natural Science Foundation of Wuhan (2024040701010051).

  7. Data availability: Not applicable.

References

1. Werken, V. D. N.; Tekinalp, H.; Khanbolouki, P.; Ozcan, S.; Willians, A.; Tehrani, M. Additively Manufactured Carbon Fiber-Reinforced Composites: State of the Art and Perspective. Additi. Manuf. 2020, 31, 100962. https://doi.org/10.1016/j.addma.2019.100962.Suche in Google Scholar

2. Liu, H. P.; Lei, W.; Tong, Z. M.; Guan, K. K.; Jia, Q. L.; Zhang, S. W.; Zhang, H. Enhanced Diffusion Kinetics of Li Ions in Double-Shell Hollow Carbon Fibers. ACS Appl. Mater. Interfaces 2021, 13 (21), 24604–24614. https://doi.org/10.1021/acsami.1c01222.Suche in Google Scholar PubMed

3. Ouyang, S.; Li, Y. B.; Ouyang, D. G.; Li, S.; Xu, N. .; Xiang, R. F. Microstructural Evolution of Carbon Fibers by Silicon Vapor Deposition and its Effect on Mullite-Corundum Castables. Ceram. Int. 2021, 47 (6), 7824–7830. https://doi.org/10.1016/j.ceramint.2020.11.128.Suche in Google Scholar

4. Li, X. S.; Li, Y. B.; Li, S.; Wei, Z. P.; Lei, R. F. Preparation of High‐Strength Lightweight Alumina with Plant‐Derived Pore Using Corn Stalk as Pore‐Forming Agent. Int. J. Appl. Ceram. Technol. 2020, 17 (5), 2465–2472. https://doi.org/10.1111/ijac.13580.Suche in Google Scholar

5. Li, M. H.; Li, Y. B.; Ouyang, D. G.; Chen, R. Y.; Li, S. The Impact of Alumina Bubble Particle Size on the Microstructure and Physical Properties of Mullite Castables. Ceram. Int. 2019, 45 (2), 1928–1939. https://doi.org/10.1016/j.ceramint.2018.10.085.Suche in Google Scholar

6. Zhou, Z. M.; Li, Y. B.; Xiang, R. F.; Li, S. J.; Luo, H.; Wang, H. L. Fabrication of Basalt Cotton/Polytetrafluoroethylene (BC/PTFE) Composite Fiberboards with Excellent Dielectric Properties Over a Wide Frequency Range. J. Mater. Sci-Mater. El. 2021, 32, 12275–12282. https://doi.org/10.1007/s10854-021-05856-z.Suche in Google Scholar

7. Zhang, C.; Ling, Y. Q.; Zhang, X. Q.; Liang, M.; Zou, H. W. Ultra-Thin Carbon Fiber Reinforced Carbon Nanotubes Modified Epoxy Composites with Superior Mechanical and Electrical Properties for the Aerospace Field. Compos. Part. A-Appl. S. 2022, 163, 107197. https://doi.org/10.1016/j.compositesa.2022.107197.Suche in Google Scholar

8. Wang, H. L.; Li, S. J.; Li, Y. B.; Xiang, R. F.; Yuan, L.; Luo, H. Synthesizing Low-Cost, High-Corrosion-Resistant Refractory Kiln Furniture for the Calcination of Li-Ion Battery Cathode Materials. Ceram. Int. 2021, 47 (3), 4049–4054. https://doi.org/10.1016/j.ceramint.2020.09.276.Suche in Google Scholar

9. Palomba, G.; Epasto, G.; Crupi, V. Lightweight Sandwich Structures for Marine Applications: A Review. Mech. Adv. Mater. Struc. 2022, 29 (26), 4839–4864. https://doi.org/10.1080/15376494.2021.1941448.Suche in Google Scholar

10. Shirinbayan, M.; Feki, I.; Nouira, S.; Bi, R. T.; Maeso, J. B.; Thomas, C.; Fitoussi, J. Multi‐Scale Damage Analysis of Filament‐Wound Carbon Fiber‐Reinforced Epoxy Composites for Hydrogen Storage Tanks Under High Strain Rates. Polym. Compos. 2025, 46 (6), 5128–5139. https://doi.org/10.1002/pc.29273.Suche in Google Scholar

11. Vita, A.; Castorani, V.; Germani, M.; Marconi, M. Comparative Life Cycle Assessment of Low-pressure RTM, Compression RTM and High-Pressure RTM Manufacturing Processes to Produce CFRP Car Hoods. Procedia. Cirp. 2019, 80, 352–357. https://doi.org/10.1016/j.procir.2019.01.109.Suche in Google Scholar

12. Fang, Y. W.; Xiang, Y.; Fang, Z. Impact Behaviour of Carbon Fibre-Reinforced Polymer (CFRP) Cables with Protective Sheaths. Constr. Build. Mater. 2024, 450, 138599. https://doi.org/10.1016/j.conbuildmat.2024.138599.Suche in Google Scholar

13. Dai, Y. J.; Li, Y. W.; Xu, X. F.; Zhu, Q. Y.; Yan, W.; Jin, S. L.; Harmuth, H. Fracture Behaviour of Magnesia Refractory Materials in Tension with the Brazilian Test. J. Eur. Ceram. Soc. 2019, 39 (16), 5433–5441. https://doi.org/10.1016/j.jeurceramsoc.2019.07.026.Suche in Google Scholar

14. Shirinbayan, M.; Rizi, H. B.; Abbasnezhad, N.; Tcharkhtchi, A.; Fitoussi, J. Tension, Compression, and Shear Behavior of Advanced Sheet Molding Compound (A-SMC): Multi-Scale Damage Analysis and Strain Rate Effect. Compos. Part. B-Eng. 2021, 225, 109287. https://doi.org/10.1016/j.compositesb.2021.109287.Suche in Google Scholar

15. Lamri, A.; Shirinbayan, M.; Pereira, M.; Truffault, L.; Fitoussi, J.; Lamouri, S.; Bakir, F.; Tcharkhtchi, A. Effects of Strain Rate and Temperature on the Mechanical Behavior of High‐Density Polyethylene. J. Appl. Polym. Sci. 2020, 137 (23), 48778; https://doi.org/10.1002/app.48778.Suche in Google Scholar

16. Zhang, M. H.; Cao, Z. Q.; Gong, X. L.; Hu, Q.; Yu, M. C.; Huo, L. B. A Novel Impact Approach Based on Electromagnetic Loading Technology: A Case Study on CFRP/Al Riveted Structures. Eng. Fract. Mech. 2024, 311, 110555. https://doi.org/10.1016/j.engfracmech.2024.110555.Suche in Google Scholar

17. Shirinbayan, M.; Fitoussi, J.; Kheradmand, F.; Montazeri, A.; Zuo, P.; Techarkhtchi, A. Coupling Effect of Strain Rate and Temperature on Tensile Damage Mechanism of Polyphenylene Sulfide Reinforced by Glass Fiber (PPS/GF30). J. Thermoplastic. Compos. Mater. 2022, 35 (11), 1994–2008. https://doi.org/10.1177/0892705720944229.Suche in Google Scholar

18. Li, X. M.; Liang, B.; Liu, P.; Cheng, H.; Cao, S. P.; Zhang, K. F. Experimental and Numerical Analysis of Low-Velocity Impact Damage of CFRP Laminates with Rubber Protective Layer. Compo. Struct. 2022, 300, 116152. https://doi.org/10.1016/j.compstruct.2022.116152.Suche in Google Scholar

19. Lan, Z. F.; Saito, O.; Yu, F. M.; Okabe, Y. Impact Damage Detection in Woven CFRP Laminates Based on a Local Defect Resonance Technique with Laser Ultrasonics. Mech. Syst. Signal. Pr. 2024, 207, 110929. https://doi.org/10.1016/j.ymssp.2023.110929.Suche in Google Scholar

20. Dai, Y. J.; Harmuth, H.; Jin, S. L.; Gruber, D.; Li, Y. W. R-Curves Determination of Ordinary Refractory Ceramics Assisted by Digital Image Correlation Method. J. Eur. Ceram. Soc. 2020, 40 (13), 4655–4663. https://doi.org/10.1016/j.jeurceramsoc.2020.05.047.Suche in Google Scholar

21. Fakhreddini-Najafabadi, S.; Torabi, M.; Taheri-Behrooz, F. Nanoclay Role in Improving Compression After Impact Strength of the Carbon/Epoxy Composites. J. Compos. Mater. 2023, 57 (17), 2717–2737. https://doi.org/10.1177/00219983231176238.Suche in Google Scholar

22. Fakhreddini-Najafabadi, S.; Torabi, M.; Taheri-Behrooz, F. An Experimental Investigation on the Low-Velocity Impact Performance of the CFRP Filled with Nanoclay. Aerosp. Sci. Technol. 2021, 116, 106858. https://doi.org/10.1016/j.ast.2021.106858.Suche in Google Scholar

23. Taheri-Behrooz, F.; Torabia, M. Low-Velocity Impact Performance of the Carbon/Epoxy Plates Exposed to the Cyclic Temperature. Steel. Compos. Struct 2023, 48 (3), 305. https://doi.org/10.12989/scs.2023.48.3.305.Suche in Google Scholar

24. Swanson, S. R. Scaling of Impact Damage in Fiber Composites from Laboratory Specimens to Structures. Compo. Struct. 1993, 25 (1–4), 249–255. https://doi.org/10.1016/0263-8223(93)90171-L.Suche in Google Scholar

25. Rajagurunathan, M.; Prakash, R. V. Numerical Investigation of the Low Velocity Impact Behavior of CFRP Laminates. Procedia. Struct. Integr. 2024, 60, 517–524. https://doi.org/10.1016/j.prostr.2024.05.071.Suche in Google Scholar

26. Shukla, B.; Naresh, L.; Raju, G. Experimental Studies of CFRP Laminates Under Repetitive Low-Velocity Impact Loading. Mater. Today. Proc. 2024, 108, 123–129. https://doi.org/10.1016/j.matpr.2023.11.155.Suche in Google Scholar

27. Wu, M. H.; Huang, A.; Yang, S.; Gu, H. Z.; Fu, L. P.; Li, G. Q.; Dong, H. Corrosion Mechanism of Al2O3-SiC-C Refractory by SiO2-MgO-Based Slag. Ceram. Int. 2020, 46 (18), 28262–28267. https://doi.org/10.1016/j.ceramint.2020.07.327.Suche in Google Scholar

28. Scott, A. E.; Sinclair, I.; Spearing, S. M.; Mavrogordato, M. N.; Hepples, W. Influence of Voids on Damage Mechanisms in Carbon/Epoxy Composites Determined via High Resolution Computed Tomography. Compos. Sci. Technol. 2014, 90, 147–153. https://doi.org/10.1016/j.compscitech.2013.11.004.Suche in Google Scholar

29. Choi, H. Y.; Wang, H. S.; Chang, F. K. Effect of Laminate Configuration and Impactor’s Mass on the Initial Impact Damage of Graphite/Epoxy Composite Plates due to Line-Loading Impact. J. Compos. Mater. 1992, 26 (6), 804–827. https://doi.org/10.1177/002199839202600603.Suche in Google Scholar

30. Ma, Y. Z.; Sang, S. B.; Wan, Z. F.; Li, Y. W.; Zhu, T. B. Preparation of Mullite Refractories with Low Thermal Conductivity and High Strength. Mater. Sci. Technol. 2023, 39 (7), 757–766. https://doi.org/10.1080/02670836.2022.2139901.Suche in Google Scholar

31. Du, R. Q.; Fu, L. P.; Gu, H. Z.; Huang, A.; Yang, S.; Chen, D. Effect of Zirconia Sol on the Microstructure and Properties of Al2O3-Based Ceramic Fabricated from Natural Bauxite. Ceram. Int. 2022, 48 (9), 12954–12961. https://doi.org/10.1016/j.ceramint.2022.01.168.Suche in Google Scholar

32. Fu, L. P.; Gu, H. Z.; Zhang, M. J.; Huang, A.; Fan, C. L.; Ni, H. W. Role of Liquid Phase Amounts in the Pore Evolution of Lightweight Bauxite: Experimental and Thermal Simulation Studies. Ceram. Int. 2019, 45 (5), 6216–6222. https://doi.org/10.1016/j.ceramint.2018.12.099.Suche in Google Scholar

33. Zhou, Q. R.; Li, Y. B.; Xiang, R. F.; Li, S. J.; Ouyang, S.; Li, X. Ultra-Low-Density Calcium Hexaaluminate Foams Prepared by Sintering of Thermo-Foamed Alumina-Calcium Carbonate Powder Dispersions in Molten Sucrose. J. Aust. Ceram. Soc. 2020, 56, 301–308. https://doi.org/10.1007/s41779-019-00445-0.Suche in Google Scholar

34. Wang, Q. H.; Li, Y. B.; Li, S. J.; Xiang, R. F.; Xu, N. .; Ouyang, S. Effects of Critical Particle Size on Properties and Microstructure of Porous Purging Materials. Mater. Lett. 2017, 197, 48–51. https://doi.org/10.1016/j.matlet.2017.03.129.Suche in Google Scholar

35. Liu, Y.; Li, X. C.; Chen, P. A.; Zhu, B. Q. Optimization of Matrix Pore Structure and its Effects on Physicochemical Properties of Corundum Castables. Ceram. Int. 2019, 45 (17), 22110–22119. https://doi.org/10.1016/j.ceramint.2019.07.228.Suche in Google Scholar

36. Dilonardo, E.; Nacucchi, M.; Pascalis, F. D.; Zarrelli, M.; Giannini, C. High Resolution X-ray Computed Tomography: A Versatile Non-Destructive Tool to Characterize CFRP-Based Aircraft Composite Elements. Compo. Sci. Technol. 2020, 192, 108093. https://doi.org/10.1016/j.compscitech.2020.108093.Suche in Google Scholar

37. Peng, Y. F.; Li, M. J.; Yang, X. J. Void Formation and Suppression in CFRP Laminate Using Newly Designed Ultrasonic Vibration Assisted RTM Technique. Compo. Struct. 2024, 329, 117796. https://doi.org/10.1016/j.compstruct.2023.117796.Suche in Google Scholar

38. Choi, H. Y.; Wang, H. S.; Chang, F. K. A New Approach Toward Understanding Damage Mechanisms and Mechanics of Laminated Composites due to Low-Velocity Impact: Part II-Analysis. J. Compos. Mater. 1991, 25 (8), 1012–1038. https://doi.org/10.1177/002199839102500804.Suche in Google Scholar

39. Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S. Voids in Fiber-Reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53 (12), 1579–1669. https://doi.org/10.1177/0021998318772152.Suche in Google Scholar

40. Ding, J.; Wang, J. T.; Yang, H.; Liu, Z. L.; Yu, C.; Li, X. C.; Deng, C.; Zhu, H. Improvement of Mechanical Properties of Composites with Surface Modified B4C for Precision Machining. Materials 2023, 16 (2), 882. https://doi.org/10.3390/ma16020882.Suche in Google Scholar PubMed PubMed Central

41. Karabutov, A. A.; Podymova, N. B. Quantitative Analysis of the Influence of Voids and Delaminations on Acoustic Attenuation in CFRP Composites by the Laser-Ultrasonic Spectroscopy Method. Compos. Part. B-Eng. 2014, 56, 238–244. https://doi.org/10.1016/j.compositesb.2013.08.040.Suche in Google Scholar

42. Schey, M.; Beke, T.; Owens, K.; George, A.; Pineda, E.; Stapleton, S. Effects of Debulking on the Fiber Microstructure and Void Distribution in Carbon Fiber Reinforced Plastics. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107364. https://doi.org/10.1016/j.compositesa.2022.107364.Suche in Google Scholar

43. Zhuang, X. J.; Ma, J. S.; Liu, F.; Dan, Y.; Huang, Y.; Jiang, L. Characterization of Hydrothermal Aging Induced Voids in Carbon Fiber Reinforced Epoxy Resin Composites Using Micro-Computed Tomography. Polym. Degrad. Stab. 2022, 206, 110198. https://doi.org/10.1016/j.polymdegradstab.2022.110198.Suche in Google Scholar

44. Liebig, W. V.; Viets, C.; Schulte, K.; Fiedler, B. Influence of Voids on the Compressive Failure Behaviour of Fibre-Reinforced Composites. Compos. Sci. Technol. 2015, 117, 225–233. https://doi.org/10.1016/j.compscitech.2015.06.020.Suche in Google Scholar

45. Naderi, M.; Iyyer, . Micromechanical Analysis of Damage Mechanisms Under Tension of 0–90° thin-ply Composite Laminates. Compos. Struct. 2020, 234, 111659. https://doi.org/10.1016/j.compstruct.2019.111659.Suche in Google Scholar

46. Bouvet, C.; Rivallant, S.; Barrau, J. J. Low Velocity Impact Modeling in Composite Laminates Capturing Permanent Indentation. Compos. Sci. Technol. 2012, 72 (16), 1977–1988. https://doi.org/10.1016/j.compscitech.2012.08.019.Suche in Google Scholar

47. Sellitto, A.; Saputo, S.; Caprio, F. D.; Riccio, A.; Russo, A.; Acanfora, V. Numerical–Experimental Correlation of Impact-Induced Damages in Cfrp Laminates. Appl. Sci. 2019, 9 (11), 2372. https://doi.org/10.3390/app9112372.Suche in Google Scholar

48. Zhou, J. J.; Wen, P. H.; Wang, S. Finite Element Analysis of a Modified Progressive Damage Model for Composite Laminates Under Low-Velocity Impact. Compos. Struct. 2019, 225, 111113. https://doi.org/10.1016/j.compstruct.2019.111113.Suche in Google Scholar

49. Zhao, L. B.; Qin, T. L.; Zhang, J. Y.; Shenoi, R. A. Modified Maximum Stress Failure Criterion for Composite π Joints. J. Compo. Mater. 2013, 47 (23), 2995–3008. https://doi.org/10.1177/0021998312460713.Suche in Google Scholar

50. Christensen, R. M. Tensor Transformations and Failure Criteria for the Analysis of Fiber Composite Materials. J. Compo. Mater. 1988, 22 (9), 874–897. https://doi.org/10.1177/002199838802200906.Suche in Google Scholar

51. Cantwell, W. J.; Morton, J. Geometrical Effects in the Low Velocity Impact Response of CFRP. Compos. Struct. 1989, 12 (1), 39–59. https://doi.org/10.1016/0263-8223(89)90043-3.Suche in Google Scholar

52. Panbarasu, K.; Ranganath, V. R.; Prakash, R. V. An Experimental Study on Impact Behavior of Quasi-Isotropic CFRP Laminates. Mater. Today: Proc. 2021, 44, 289–293. https://doi.org/10.1016/j.matpr.2020.09.467.Suche in Google Scholar

53. Stone, D. E. W.; Clarke, B. Ultrasonic Attenuation as a Measure of Void Content in Carbon-Fibre Reinforced Plastics. Non-Destr. Test 1975, 8 (3), 137–145. https://doi.org/10.1016/0029-1021(75)90023-7.Suche in Google Scholar

54. Dai, Y. J.; Jin, S. L.; Zhou, R.; Li, Y. W.; Harmuth, H.; Tschegg, E. K. Mixed-Mode Fracture Behaviour of Refractories with Asymmetric Wedge Splitting Test. Part II: Experimental Case Study. Ceram. Int. 2022, 48 (14), 19757–19766. https://doi.org/10.1016/j.ceramint.2022.03.244.Suche in Google Scholar

55. Liu, H.; Yang, Y. F.; Wang, Z. F.; Wang, X. T.; Ma, Y. Enhanced Mechanical and Thermal Insulation Properties of Mullite-Based Thermal Insulation Materials by Heat Treatment in Reducing Atmosphere. J. Aust. Ceram. Soc. 2021, 57, 525–532. https://doi.org/10.1007/s41779-020-00551-4.Suche in Google Scholar

56. Dai, Y. J.; Li, Y. W.; Xu, X. F.; Zhu, Q. Y.; Yin, Y. C.; Ge, S.; Huang, A.; Pan, L. Characterization of Tensile Failure Behaviour of Magnesia Refractory Materials by a Modified Dog-Bone Shape Direct Tensile Method and Splitting Tests. Ceram. Int. 2020, 46 (5), 6517–6525. https://doi.org/10.1016/j.ceramint.2019.11.133.Suche in Google Scholar

57. Liu, W. J.; Liao, .; Nath, M.; Ji, Z. X.; Dai, Y. J.; Pan, L. P.; Li, Y.; Jastrzębska, I.; Szczerba, J. Effects of Curing Time on the Pore Structure Evolution and Fracture Behavior of CAC Bonded Alumina-Spinel Castables. Ceram. Int. 2022, 48 (17), 25000–25010. https://doi.org/10.1016/j.ceramint.2022.05.153.Suche in Google Scholar

58. Xu, X. F.; Li, Y. W.; Dai, Y. J.; Zhu, T. B.; Pan, L. P.; Szczerba, J. Influence of Graphite Content on Fracture Behavior of MgO-C Refractories Based on Wedge Splitting Test with Digital Image Correlation Method and Acoustic Emission. Ceram. Int. 2021, 47 (9), 12742–12752. https://doi.org/10.1016/j.ceramint.2021.01.134.Suche in Google Scholar

59. Im, K. H.; Cha, C. S.; Kim, S. K.; Yang, I. Y. Effects of Temperature on Impact Damages in CFRP Composite Laminates. Compos. Part. B-Eng 2001, 32 (8), 669–682. https://doi.org/10.1016/S1359-8368(01)00046-4.Suche in Google Scholar

60. Zhou, J.; Liao, B.; Shi, Y.; Zuo, Y.; Tuo, H.; Jia, L. Low-Velocity Impact Behavior and Residual Tensile Strength of CFRP Laminates. Compos. Part. B-Eng. 2019, 161, 300–313. https://doi.org/10.1016/j.compositesb.2018.10.090.Suche in Google Scholar

61. Haider, A. L. Z.; Zhao, X. L.; Al-Mihaidi, R. Mechanical Behaviour of Normal Modulus Carbon Fibre Reinforced Polymer (CFRP) and Epoxy Under Impact Tensile Loads. Procedia. Eng. 2011, 10, 2453–2458. https://doi.org/10.1016/j.proeng.2011.04.404.Suche in Google Scholar

62. Cartié, D. D. R.; Irving, P. E. Effect of Resin and Fibre Properties on Impact and Compression After Impact Performance of CFRP. Compos. Part A-Appl. S 2002, 33 (4), 483–493. https://doi.org/10.1016/S1359-835X(01)00141-5.Suche in Google Scholar

63. Rivallant, S.; Bouvet, C.; Abi Abdallah, E.; Broll, B.; Barrau, J. J. Experimental Analysis of CFRP Laminates Subjected to Compression After Impact: The Role of Impact-Induced Cracks in Failure. Compos. Struct. 2014, 111, 147–157. https://doi.org/10.1016/j.compstruct.2013.12.012.Suche in Google Scholar

64. Lee, J. F.; Soutis, C. Experimental Investigation on the Behaviour of CFRP Laminated Composites Under Impact and Compression After Impact (CAI). EKC2008 Proc. EU-Korea Conf. Sci. Technol. 2008, 275–286. https://doi.org/10.1007/978-3-540-85190-5_29.Suche in Google Scholar

65. Amirashjaee-Asalemi, K.; Taheri-Behrooz, F.; Fakhreddini-Najafabadi, S. Investigation of the Low-Velocity Impact and Compression After Impact Performance of CFRPs. J. Eng. Mech 2023, 149 (9), 04023066. https://doi.org/10.1061/JENMDT.EMENG-6932.Suche in Google Scholar

66. Stamopoulos, A. G.; Tserpes, K. I.; Pantelakis, S. G. Multiscale Finite Element Prediction of Shear and Flexural Properties of Porous CFRP Laminates Utilizing X-ray CT Data. Theor. Appl. Fract. Mech. 2018, 97, 303–313. https://doi.org/10.1016/j.tafmec.2017.04.020.Suche in Google Scholar

67. Kupsch, A.; Trappe, V.; Müller, B. R.; Bruno, G. Evolution of CFRP Stress Cracks Observed by in-situ X-ray Refractive Imaging. IOP. Conf. Ser.: Mater. Sci. Eng. 2020, 942 (1), 012035. https://doi.org/10.1088/1757-899X/942/1/012035.Suche in Google Scholar

68. Mohammadpour, M.; Taheri-Behrooz, F. Compressive and Flexural Responses of Auxetic Sandwich Panels with Modified re-Entrant Honeycomb Cores. J. Sandw. Struct. Mater. 2024, 26 (7), 1165–1181. https://doi.org/10.1177/10996362241275532.Suche in Google Scholar

69. Ghasemi, M.; Mohammadpour, M.; Taheri‐Behrooz, F. Energy Absorption and Low-Velocity Impact Responses of the Sandwich Panels with Lattice Truss Core. J. Sandw. Struct. Mater. 2024, 26 (6), 793–811. https://doi.org/10.1177/10996362241238272.Suche in Google Scholar

70. Xie, K.; Li, M.; Shen, J. Dynamic Behavior and Energy Absorption of Typical Porous Materials Under Impacts. Mater 2024, 17 (20), 5035. https://doi.org/10.3390/ma17205035.Suche in Google Scholar PubMed PubMed Central

71. Hapke, J.; Gehrig, F.; Huber, N.; Schulte, K.; Lilleodden, E. T. Compressive Failure of UD-CFRP Containing Void Defects: in Situ SEM Microanalysis. Compos. Sci. Technol. 2011, 71 (9), 1242–1249. https://doi.org/10.1016/j.compscitech.2011.04.009.Suche in Google Scholar

72. Shikhmanter, L.; Cina, B.; Eldror, I. Fractography of CFRP Composites Damaged by Impact and Subsequently Loaded Statically to Failure. Compos 1995, 26 (2), 154–160. https://doi.org/10.1016/0010-4361(95)90416-w.Suche in Google Scholar

Received: 2025-01-20
Accepted: 2025-04-11
Published Online: 2025-09-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2025-0023/html
Button zum nach oben scrollen