High performance of synergistic reinforced natural rubber with kewda fiber (Pandanus odoratissimus) and carbon black: thermal, morphological and statistically optimized mechanical studies
-
Sumit Kumar
, Sohan Lal, Sanjiv Arora
, Parvin Kumar , Shikha Rani , Anjali Verma and Jitendra K. Nagar
Abstract
This work describes the preparation of kewda fiber and carbon black reinforced natural rubber composites by the milling process. The alkali-treated fiber is incorporated in the rubber matrix as 0, 1, 3, and 5 per hundred rubber with varying amounts of carbon black 0, 10, and 15 phr. Response surface methodology was used to examine the optimum tensile (20.83 MPa) and tear strength (56.00 N mm−1) along with elongation at break (2,546 %) at the corresponding composition of 1.50 phr of fiber and 8.94 phr of carbon black, which are higher than that of the neat sample, 12.71 MPa and 24.56 N mm−1. Tensile strength was diminished from 20.83 MPa to 13.19 MPa as the fiber amount was increased beyond 1 phr up to 5 phr. Likewise, the addition of carbon black beyond 10 per hundred rubber causes a decrease in mechanical properties. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to study the morphology and inter-component interactions of composites. The thermal stability of the composites was improved from 320 °C to 335 °C and the maximum weight loss occurs at a higher temperature with the addition of carbon black. Thus, the reinforcement of fiber and carbon black in the rubber matrix improved the mechanical and thermal properties of the final material.
Acknowledgments
The author is thankful to the funding agency CSIR New Delhi for financial support in this work. Special thanks to the Chairpersons, Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana and Chaudhary Charan Singh University, Meerut, Uttar Pradesh for the needed laboratory facilities and machinery.
-
Research ethics: Not Applicable.
-
Informed consent: Not Applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author(s) declared no potential competing of interest with respect to the research, authorship, and/or publication of this article.
-
Research funding: This work was supported by the CSIR New Delhi under the award number 09/105(2018)-EMR-I to Sumit Kumar.
-
Data availability: All data analysed or generated from this study are included in this research article.
References
1. Tangboriboon, N.; Chaisakrenon, S.; Banchong, A.; Kunanuruksapong, R.; Sirivat, A. Mechanical and Electrical Properties of Alumina/Natural Rubber Composites. J. Elastomers Plast. 2012, 44, 21–41. https://doi.org/10.1177/0095244311416579.Search in Google Scholar
2. Salleh, S. Z.; Ismail, H.; Ahmad, Z. Properties of Natural Rubber Latex-Compatibilized Natural Rubber/Recycled Chloroprene Rubber Blends. J. Elastomers Plast. 2016, 48, 640–655. https://doi.org/10.1177/0095244315613620.Search in Google Scholar
3. Dannenberg, E. M. Filler Choices in the Rubber Industry. Rubber Chem. Technol. 2011, 55, 860–880. https://doi.org/10.5254/1.3535905.Search in Google Scholar
4. Jawaid, M.; Khalil, H. A. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydr. Polym. 2011, 86, 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043.Search in Google Scholar
5. Zhou, Y.; Fan, M.; Chen, L.; Zhuang, J. Lignocellulosic Fibre Mediated Rubber Composites: An Overview. Compos. B Eng. 2015, 76, 180–191. https://doi.org/10.1016/j.compositesb.2015.02.028.Search in Google Scholar
6. Saba, N.; Tahir, P. M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. https://doi.org/10.3390/polym6082247.Search in Google Scholar
7. Stelescu, M.; Manaila, E.; Craciun, G.; Chirila, C. Development and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers. Materials 2017, 10, 787–807. https://doi.org/10.3390/ma10070787.Search in Google Scholar PubMed PubMed Central
8. Setua, D. K.; De, S. K. Short Silk Fiber Reinforced Natural Rubber Composites. Rubber Chem. Technol. 2011, 56, 808–826. https://doi.org/10.5254/1.3538156.Search in Google Scholar
9. De, D.; De, D.; Adhikari, B. The Effect of Grass Fiber Filler on Curing Characteristics and Mechanical Properties of Natural Rubber. Polym. Adv. Technol. 2004, 15, 708–715. https://doi.org/10.1002/pat.530.Search in Google Scholar
10. Balaji, A.; Karthikeyan, B.; Sundar, R. C. Bagasse Fiber – The Future Biocomposite Material: A Review. Int. J. Chemtech. Res. 2014, 7, 223–233. https://www.researchgate.net/publication/270453697_Bagasse_Fiber_-_The_Future_Biocomposite_Material_A_Review.Search in Google Scholar
11. Kumar, S.; Lal, S.; Jagdeva, G.; Aroroa, S.; Kumar, P.; Soni, R. K.; Kumar, H.; Kumar, S.; Panchal, S. Performance-Based Natural Rubber Composites Reinforced with Jute Fibers and Nano-Silica: Thermal, Morphological, and Mechanical Studies with Statistical Optimization. Iran. Polym. J. 2023, 32, 609–619. https://doi.org/10.1007/s13726-023-01148-x.Search in Google Scholar
12. Ismail, H.; Jaffri, R. M.; Rozman, H. D. Oil Palm Wood Flour Filled Natural Rubber Composites: Fatigue and Hysteresis Behaviour. Polym. Int. 2000, 49, 618–622. https://doi.org/10.1002/1097-0126(200006)49:6%3C618::AID-PI418%3E3.0.CO;2-%23.10.1002/1097-0126(200006)49:6<618::AID-PI418>3.0.CO;2-#Search in Google Scholar
13. Ayrilmiş, N.; Yurttas, E.; Avsar, E.; Kahraman, M.; Özdemir, F.; Palanisamy, S.; Yetiş, F.; Gurusamy, M.; Al-Farraj, S. Properties of Plastic Composites Filled with Giant Reed Flour and Magnesium Oxide Nanoparticles. BioResources 2025, 20 (2), 2671–2686; https://doi.org/10.15376/biores.20.2.2670-2686.Search in Google Scholar
14. Palaniappan, M.; Palanisamy, S.; Khan, R. ; H. A. N.; Tadepalli, S.; Murugesan, T. M.; Santulli, C. Synthesis and Suitability Characterization of Microcrystalline Cellulose from Citrus X Sinensis Sweet Orange Peel Fruit Waste-based Biomass for Polymer Composite Applications. J. Polym. Res. 2024, 31 (4), 105. https://doi.org/10.1007/s10965-024-03946-0.Search in Google Scholar
15. Manickaraj, K.; Karthik, A.; Palanisamy, S.; Jayam, M.; Ali, S. K.; Sankar, S. L.; Al-Farraj, S. A. Improving Mechanical Performance of Hybrid Polymer Composites: Incorporating Banana Stem Leaf and Jute Fibers with Tamarind Shell Powder. BioResources 2025, 20 (1); https://doi.org/10.15376/biores.20.1.1998-2025.Search in Google Scholar
16. Manaila, E.; Stelescu, M. D.; Doroftei, F. Polymeric Composites Based on Natural Rubber and Hemp Fibers. Iran. Polym. J. 2015, 24, 135–148. https://doi.org/10.1007/s13726-015-0307-6.Search in Google Scholar
17. Geethamma, V. G.; Kalaprasad, G.; Groeninckx, G.; Thomas, S. Dynamic Mechanical Behavior of Short Coir Fiber Reinforced Natural Rubber Composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1499–1506. https://doi.org/10.1016/j.compositesa.2005.03.004Search in Google Scholar
18. Datta, J.; Włoch, M. Preparation, Morphology and Properties of Natural Rubber Composites Filled with Untreated Short Jute Fibres. Polym. Bull. 2017, 74, 763–782. https://doi.org/10.1007/s00289-016-1744-x.Search in Google Scholar
19. Masłowski, M.; Miedzianowska, J.; Strzelec, K. Natural Rubber Biocomposites Containing Corn, Barley and Wheat Straw. Polym. Test. 2017, 63, 84–91. https://doi.org/10.1016/j.polymertesting.2017.08.003.Search in Google Scholar
20. Lopattananon, N.; Panawarangkul, K.; Sahakaro, K.; Ellis, B. Performance of Pineapple Leaf Fiber-Natural Rubber Composites: The Effect of Fiber Surface Treatments. J. Appl. Polym. Sci. 2006, 102, 1974–1984. https://doi.org/10.1002/app.24584.Search in Google Scholar
21. Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005.Search in Google Scholar
22. Adekunle, K. F. Surface Treatments of Natural Fibres – A Review: Part 1. Open J. Polym. Chem 2015, 05, 41–46. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=58642&#abstract.10.4236/ojpchem.2015.53005Search in Google Scholar
23. Narayana, V. L.; Rao, L. B. A Brief Review on the Effect of Alkali Treatment on Mechanical Properties of Various Natural Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 44, 1988–1994. https://doi.org/10.1016/j.matpr.2020.12.117.Search in Google Scholar
24. Jacob, M.; Thomas, S.; Varughese, K. T. Mechanical Properties of Sisal/Oil Palm Hybrid Fiber Reinforced Natural Rubber Composites. Compos. Sci. Technol. 2004, 64, 955–965. https://doi.org/10.1016/S0266-3538(03)00261-6.Search in Google Scholar
25. Roy, K.; Debnath, S. C.; Potiyaraj, P. A Critical Review on the Utilization of Various Reinforcement Modifiers in Filled Rubber Composites. J. Elastomer Plast. 2020, 52, 167–193. https://doi.org/10.1177/0095244319835869.Search in Google Scholar
26. Roy, K.; Debnath, S. C.; Das, A.; Heinrich, G.; Potiyaraj, P. Exploring the Synergistic Effect of Short Jute Fiber and Nanoclay on the Mechanical, Dynamic Mechanical and Thermal Properties of Natural Rubber Composites. Polym. Test. 2018, 67, 487–493. https://doi.org/10.1016/j.polymertesting.2018.03.032.Search in Google Scholar
27. Thaptong, P.; Sirisinha, C.; Thepsuwan, U.; Sae-Oui, P. Properties of Natural Rubber Reinforced by Carbon Black-based Hybrid Fillers. Polym. Plast. Technol. Eng. 2014, 53 (8), 818–823. https://doi.org/10.1080/03602559.2014.886047.Search in Google Scholar
28. Abdul Salim, Z. A. S.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57 (6), 523–539. https://doi.org/10.1080/03602559.2017.1329432.Search in Google Scholar
29. Salaeh, S.; Nakason, C. Influence of Modified Natural Rubber and Structure of Carbon Black on Properties of Natural Rubber Compounds. Polym. Compos. 2012, 33, 489–500. https://doi.org/10.1002/pc.22169.Search in Google Scholar
30. Du, X.; Zhang, Y.; Pan, X.; Meng, F.; You, J.; Wang, Z. Preparation and Properties of Modified Porous Starch/Carbon Black/Natural Rubber Composites. Compos. B Eng. 2019, 156, 1–7. https://doi.org/10.1016/j.compositesb.2018.08.033.Search in Google Scholar
31. Aruchamy, K.; Karuppusamy, M.; Krishnakumar, S.; Palanisamy, S.; Jayamani, M.; Sureshkumar, K.; Ali, S. K.; Al-Farraj, S. A. Enhancement of Mechanical Properties of Hybrid Polymer Composites Using Palmyra Palm and Coconut Sheath Fibers: The Role of Tamarind Shell Powder. BioResources 2025, 20 (1), 698–724; https://doi.org/10.15376/biores.20.1.698-724.Search in Google Scholar
32. Palaniappan, M.; Palanisamy, S.; Murugesan, T. M.; Alrasheedi, N. H.; Ataya, S.; Tadepalli, S.; Elfar, A. A. Novel Ficus retusa L. Aerial Root Fiber: a Sustainable Alternative for Synthetic Fibres in Polymer Composites Reinforcement. Biomass Convers. Biorefin 2025, 15 (5), 7585–7601. https://doi.org/10.1007/s13399-024-05495-4.Search in Google Scholar
33. Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019.Search in Google Scholar PubMed
34. Sareena, C.; Ramesan, M. T.; Purushothaman, E. Utilization of Peanut Shell Powder as a Novel Filler in Natural Rubber. J. Appl. Polym. Sci. 2011, 125, 2322–2334. https://doi.org/10.1002/app.36468.Search in Google Scholar
35. Fei, Z.; Long, C.; Qingyan, P.; Shugao, Z. Influence of Carbon Black on Crosslink Density of Natural Rubber. J. Macromol. Sci. Phys. 2012, 51, 1208–1217. https://doi.org/10.1080/00222348.2012.664494.Search in Google Scholar
36. Das, S.; Das, P.; Das, N. C.; Das, D. A Review of Emerging Bio-based Constituents for Natural Fiber Polymer Composites. J. Text. Inst. 2024, 115 (12), 2554–2580. https://doi.org/10.1080/00405000.2023.2300592.Search in Google Scholar
37. Abdollahiparsa, H.; Shahmirzaloo, A.; Blok, R.; Teuffel, P. Influence of Moisture Absorption on Tensile and Compressive Properties of Natural Fiber-Reinforced Thermoplastic Composites. Polym. Plast. Technol. Mater 2023, 62 (16), 2138–2142. https://doi.org/10.1080/25740881.2023.2250845.Search in Google Scholar
38. Das, N. C.; Khastgir, D.; Chaki, T. K.; Chakraborty, A. Electromagnetic Interference Shielding Effectiveness of Carbon Black and Carbon Fibre Filled EVA and NR Based Composites. Compos. Part A Appl. Sci. Manuf. 2000, 31 (10), 1069–1081. https://doi.org/10.1016/S1359-835X(00)00064-6.Search in Google Scholar
39. Zhu, S.; Wu, S.; Fu, Y.; Guo, S. Prediction of particle-reinforced Composite Material Properties Based on an Improved Halpin–Tsai Model. AIP Adv. 2024, 14 (4), 045339. https://doi.org/10.1063/5.0206774.Search in Google Scholar
40. Jiang, Z.; He, G.; Duan, Y.; Jiang, Y.; Lin, Y.; Zhu, Y.; Wang, J. Contrasting Effects of Various Factors upon the Properties of Foam Ceramics and the Mechanisms of Crystalline Phase Reconstruction and Microstructure Regulation. Ceram. Int. 2024, 50 (12), 21645–21657. https://doi.org/10.1016/j.ceramint.2024.03.277.Search in Google Scholar
41. Qu, L.; Huang, G.; Zhang, P.; Nie, Y.; Weng, G.; Wu, J. Synergistic Reinforcement of Nanoclay and Carbon Black in Natural Rubber. Polym. Int. 2010, 59, 1397–1402. https://doi.org/10.1002/pi.2881.Search in Google Scholar
42. Huang, G.; Zhang, L.; Chu, S.; Xie, Y.; Chen, Y. A Highly Ductile Carbon Material Made of Triangle Rings: a Study of Machine Learning. Appl. Phys. Lett. 2024, 124, 043103. https://doi.org/10.1063/5.0189906.Search in Google Scholar
43. Jianhui, Z.; Yaopeng, Hu.; Qingchun, Li.; Changcheng, Y. Mechanical Performance Simulation and Optimal Design of Carbon Fiber Composite B-Piller. Model. Simul. Mater. Sci. Eng. 2024, 32, 065022; https://doi.org/10.1088/1361-651X/ad6202.Search in Google Scholar
44. Zhang, J.; Zuo, W.; Tian, Y.; Chen, L.; Yin, L.; Zhang, J. Sulfur Transformation During Microwave and Conventional Pyrolysis of Sewage Sludge. Environ. Sci. Technol. 2017, 51, 709–717. https://doi.org/10.1021/acs.est.6b03784.Search in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston