Corrosion behavior of basalt fibers modified by in-situ grown silicon nanowires in an acid environment under high-temperature and high-pressure
-
He Tian
, Pengfei Li , Dong Xiang, Libing Liu
, Haoming Sun , Yuanpeng Wu , Mulan Mu, Bin Wang
, Chunxia Zhao and Hui Li
Abstract
Silicon nanowires were grown in-situ on the surface of basalt fibers (BFs) by a solution method. The mechanical properties and corrosion behavior of BFs before and after modification by hydrochloric acid (HCl) solution at room temperature, high-temperature, and high-temperature, high-pressure conditions were studied. The results showed that a high-temperature and high-pressure accelerated the corrosion of BF in HCl solution. The growth of silicon nanowires on the BFs improved the corrosion resistance of the BFs without greatly affecting their mechanical properties. After corrosion for 1 h in HCl at a high temperature and high pressure, the strength retention ratio of silicon nanowires modified BFs (PSN–BF) was 54 %, while that of unmodified BFs was 45 %. Upon increasing the modification time, the water contact angle on BFs increased from 138° at 4 h to 155° at 8 h. The higher contact angle indicated the greater hydrophobicity of the modified BFs, which reduced contact between BFs and the corrosive medium and improved their corrosion resistance. In addition, hydrogen ions (H+) did not displace Si atoms in the silicon nanowires, and the tight wrapping of silicon nanowires protected the BF surface by preventing the reactions of metallic elements with H+.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: No.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Natural Science Foundation of China (12102374), Sichuan Science and Technology Program (2024YFHZ0228), Research and Innovation Fund for Graduate Students of Southwest Petroleum University (2022KYCX110).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Santos, B. A. F.; Souza, R. C.; Serenario, M. E. D.; Gonçalves, M. C.; Mendes Júnior, E. P.; Simões, T. A.; Oliveira, J. R.; Vaz, G. L.; Caldeira, L.; Gomes, J. A. C. P.; Bueno, A. H. S. The Effect of Different Brines and Temperatures on the Competitive Degradation Mechanisms of CO2 and H2S in API X65 Carbon Steel. J. Nat. Gas Sci. Eng. 2020, 80 (0), 103405; https://doi.org/10.1016/j.jngse.2020.103405.Search in Google Scholar
2. Tan, C.; Xu, X.; Xu, L.; Yin, C.; Qiao, L. Effects of Chloride Concentration on CO2 Corrosion of Novel 3Cr2Al Steel in Simulated Oil and Gas Well Environments. Mater. Corros. 2019, 70 (2), 366–376; https://doi.org/10.1002/maco.201810420.Search in Google Scholar
3. Moiseeva, L. S. Carbon Dioxide Corrosion of Oil and Gas Field Equipment. Prot. Met. Phys. Chem. Surf. 2005, 41 (1), 76–83; https://doi.org/10.1007/s11124-005-0011-6.Search in Google Scholar
4. Tatyana, I. Study of Corrosion-Resistant Steels in Hydrogen Sulfide-Containing Environments of Oil and Gas Fields. E3S Web of Conferences 2024, 474, 01004.10.1051/e3sconf/202447401004Search in Google Scholar
5. Jiao, J.; Cheng, X.; Wang, J.; Sheng, L.; Zhang, Y.; Xu, J.; Jing, C.; Sun, S.; Xia, H.; Ru, H. A Review of Research Progress on Machining Carbon Fiber-Reinforced Composites with Lasers. Micromachines 2022, 14 (1), 24; https://doi.org/10.3390/mi14010024.Search in Google Scholar PubMed PubMed Central
6. Sharma, H.; Kumar, A.; Rana, S.; Sahoo, N. G.; Jamil, M.; Kumar, R.; Sharma, S.; Li, C.; Kumar, A.; Eldin, S. M.; Abbas, M. Critical Review on Advancements on the fiber-reinforced Composites: Role of Fiber/Matrix Modification on the Performance of the Fibrous Composites. J. Mater. Res. Technol. 2023, 26 (Suppl C), 2975–3002; https://doi.org/10.1016/j.jmrt.2023.08.036.Search in Google Scholar
7. Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A Review on Basalt Fibre and Its Composites. Compos. Pt. B-Eng. 2015, 74 (0), 74–94; https://doi.org/10.1016/j.compositesb.2014.12.034.Search in Google Scholar
8. Wu, G.; Wang, X.; Wu, Z.; Dong, Z.; Zhang, G. Durability of Basalt Fibers and Composites in Corrosive Environments. J. Compos. Mater. 2015, 49 (7), 873–887; https://doi.org/10.1177/0021998314526628.Search in Google Scholar
9. Liu, J.; Jiang, M.; Wang, Y.; Wu, G.; Wu, Z. Tensile Behaviors of ECR-Glass and High Strength Glass Fibers After NaOH Treatment. Ceram. Int. 2013, 39 (8), 9173–9178; https://doi.org/10.1016/j.ceramint.2013.05.018.Search in Google Scholar
10. Li, H.; Yan, M.; Qi, D.; Zhang, S.; Ding, N.; Cai, X.; Li, Q.; Zhang, X.; Deng, J. Corrosion of E-glass Fiber in Simulated Oilfield Environments. J. Pet. Sci. Eng. 2011, 78 (2), 371–375; https://doi.org/10.1016/j.petrol.2011.06.006.Search in Google Scholar
11. Ramachandran, B. E.; Velpari, V.; Balasubramanian, N. Chemical Durability Studies on Basalt Fibres. J. Mater. Sci. 1981, 16, 3393–3397; https://doi.org/10.1007/bf00586301.Search in Google Scholar
12. Zhao, Y.; Shen, Z.; Tian, Z.; Huang, W.; Wu, J.; Fan, Z. Corrosion Behaviour of Low Dielectric Glass Fibres in Hydrochloric Acid. J. Non-Cryst. Solids 2019, 511 (0), 212–218; https://doi.org/10.1016/j.jnoncrysol.2018.12.039.Search in Google Scholar
13. Wang, X.; Li, P.; Xiang, D.; Wang, B.; Zhang, Z.; Zhang, J.; Zhao, C.; Li, H.; Tan, W.; Wang, J.; Li, Y. Influence of High-Temperature, High-Pressure, and Acidic Conditions on the Structure and Properties of High-Performance Organic Fibers. Mater. Test. 2022, 64 (5), 623–635; https://doi.org/10.1515/mt-2021-2099.Search in Google Scholar
14. Sun, H.; Li, P.; Wang, X.; Xiang, D.; Zhang, Z.; Wang, B.; Wu, Y.; Zhao, C.; Li, H.; Harkin-Jones, E.; Li, Y. Effect of High-Temperature, High-Pressure, and Acidic Conditions on the Structure and Properties of High-Performance Fibers. Mater. Corros. 2022, 73 (9), 1; https://doi.org/10.1002/maco.202213129.Search in Google Scholar
15. Blaznov, A.; Atyasova, E.; Shundrina, I.; Samoilenko, V.; Firsov, V.; Zubkov, A. Thermomechanical Characterization of BFRP and GFRP with Different Degree of Conversion. Polym. Test. 2017, 60, 49–57; https://doi.org/10.1016/j.polymertesting.2017.03.011.Search in Google Scholar
16. Dhand, V.; Mittal, G.; Rhee, K.; Park, S. A Short Review on Basalt Fiber Reinforced Polymer Composites. Compos. Pt. B-Eng. 2015, 73 (0), 166–180; https://doi.org/10.1016/j.compositesb.2014.12.011.Search in Google Scholar
17. Gogoleva, O. V.; Petrova, P. N.; Popov, S. N.; Okhlopkova, A. A. Wear-Resistant Composite Materials Based on Ultrahigh Molecular Weight Polyethylene and Basalt Fibers. J. Frict. Wear 2015, 36 (4), 301–305; https://doi.org/10.3103/s1068366615040054.Search in Google Scholar
18. Jamshaid, H.; Mishra, R. A Green Material from Rock: Basalt Fiber - A Review. J. Text. Inst. 2016, 107 (7), 923–937; https://doi.org/10.1080/00405000.2015.1071940.Search in Google Scholar
19. Sim, J.; Park, C.; Moon, D. Y. Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures. Compos. Pt. B-Eng. 2005, 36 (6-7), 504–512; https://doi.org/10.1016/j.compositesb.2005.02.002.Search in Google Scholar
20. Xing, D.; Xi, X.; Ma, P. Factors Governing the Tensile Strength of Basalt Fibre. Compos. Pt. A-Appl. Sci. Manuf. 2019, 119 (0), 127–133; https://doi.org/10.1016/j.compositesa.2019.01.027.Search in Google Scholar
21. Xiang, D.; Qiu, T.; Sun, H.; Zhao, C.; Wang, B.; Li, H.; Liu, Y.; Pan, Y.; Wu, Y. In Situ Growth of Polysiloxane Nanowires on Basalt Fibers and Interfacial Enhancement with Epoxy Resin. Mater. Lett. 2024, 357 (0), 135728; https://doi.org/10.1016/j.matlet.2023.135728.Search in Google Scholar
22. Qiu, T.; Liu, L.; Xiang, D.; Harkin‐Jones, E.; Dong, D.; Liu, Z.; Ma, J.; Wu, Y.; Zhao, C.; Li, H. Improving the Mechanical Properties and High‐Temperature, High‐Pressure Corrosion Resistance of Basalt Fiber/Epoxy Composites via Fiber Surface Modification with Silicon Nanowires and Waterborne Polyurethane. Polym. Compos. 2025, 46, 13738–13750; https://doi.org/10.1002/pc.30019.Search in Google Scholar
23. Chen, C.; Li, P.; Xiang, D.; Liu, L.; Sun, H.; Wu, Y.; Mu, M.; Wang, B.; Zhao, C.; Li, H. Study on Mechanical Properties and Acid Corrosion Resistance of Basalt Fiber/Epoxy Resin Composites Modified by Silicon Nanowires. J. Mater. Eng. Perform. 2025, 34, 22784–22794; https://doi.org/10.1007/s11665-025-10919-x.Search in Google Scholar
24. Sheng, G.; Shi, Y.; Zhang, B.; Qin, J.; Zhang, B.; Jiang, X.; Gu, C.; Wu, K.; Zhang, C.; Yu, J.; Li, X.; Zhang, X. Surface Modification of Silicon Nanowires with Siloxane Molecules for High-Performance Hydrovoltaic Devices. ACS Appl. Mater. Interfaces 2024, 16 (6), 8024–8031; https://doi.org/10.1021/acsami.3c15852.Search in Google Scholar PubMed
25. Li, M.; Xing, D.; Zheng, Q.; Li, H.; Hao, B.; Ma, P. Corrosion Behaviors of Basalt Fiber Exposed to the Acids. Constr. Build. Mater. 2022, 316 (Suppl C), 125781–125713, 125783; https://doi.org/10.1016/j.conbuildmat.2021.125783.Search in Google Scholar
26. Ha, J. C.; Park, S. J.; Kim, Y. H. Corrosion Mechanism and Degradation Behavior of Basalt Fiber-Reinforced Composites in Sulfuric Acid Solution. Int. J. Mod. Phys. B 2021, 35 (14-16), 1; https://doi.org/10.1142/s0217979221400294.Search in Google Scholar
27. Li, H.; Zhang, X.; Qi, D.; Ding, N.; Cai, X. Corrosion Resistance of E6-Glass Fibre in Simulated Oilfield Environments. J. Reinf. Plast. Compos. 2012, 31 (8), 563–572; https://doi.org/10.1177/0731684412441268.Search in Google Scholar
28. Ikegami, Y. Infrared Spectra of Troponoid Compounds. II. Absorption Band of O-H Stretching Vibration in Some Tropolones. Bull. Chem. Soc. Jpn. 1961, 34 (1), 91–93; https://doi.org/10.1246/bcsj.34.91.Search in Google Scholar
29. Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega 2023, 8 (19), 17064–17076; https://doi.org/10.1021/acsomega.3c01336.Search in Google Scholar PubMed PubMed Central
30. Wróbel, P.; Kubisiak, P.; Eilmes, A. Ab Initio Molecular Dynamics Simulations of Aqueous LITFSI Solutions–Structure, Hydrogen Bonding, and IR Spectra. J. Phys. Chem. B 2024, 128 (4), 1001–1011.10.1021/acs.jpcb.3c06633Search in Google Scholar PubMed PubMed Central
31. Jayamani, E.; Loong, T. G.; Bakri, M. K. B. Comparative Study of Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Natural Fibres Treated with Chemical, Physical and Biological Methods. Polym. Bull. 2019, 77 (4), 1605–1629; https://doi.org/10.1007/s00289-019-02824-w.Search in Google Scholar
32. Matykiewicz, D.; Barczewski, M. On the Impact of Flax Fibers as an Internal Layer on the Properties of Basalt-Epoxy Composites Modified with Silanized Basalt Powder. Compos. Commun. 2020, 20 (Complete), 100360; https://doi.org/10.1016/j.coco.2020.100360.Search in Google Scholar
33. Wang, Q.; Ding, Y.; Randl, N. Investigation on the Alkali Resistance of Basalt Fiber and Its Textile in Different Alkaline Environments. Constr. Build. Mater. 2021, 272, 121670; https://doi.org/10.1016/j.conbuildmat.2020.121670.Search in Google Scholar
34. Zheng, L.; Huang, B.; Wei, J.; Dai, Y.; Whangbo, M.-H. Synthesis and Optical Properties of Amorphous C-Si-O Particles. J. Lumines. 2011, 131 (2), 218–224; https://doi.org/10.1016/j.jlumin.2010.10.001.Search in Google Scholar
35. Boussaa, S. A.; Benfadel, K.; Khodja, A. T.; Ayachi, M.; Boulil, R.; Bekhedda, K.; Talbi, L.; Boukezzata, A.; Ouadah, Y.; Allam, D.; Maifi, L.; Keffous, A.; Chetoui, A.; Torki, C.; Boudeffar, F.; Achacha, S.; Manseri, A.; Boutarek, N. Z.; Kaci, S. Elaboration and Characterization of Amorphous Silicon Carbide Thin Films (a-SiC) by Sputerring Magnetron Technique for Photoelectrochemical CO2 Conversion. Silicon 2022, 15 (3), 1145–1157; https://doi.org/10.1007/s12633-022-02075-x.Search in Google Scholar
36. Stojanovic, A.; Olveira, S.; Fischer, M.; Seeger, S. Polysiloxane Nanotubes. Chem. Mat. 2013, 25 (14), 2787–2792; https://doi.org/10.1021/cm400851k.Search in Google Scholar
37. Guezguez, I.; Mrabet, B.; Ferjani, E. XPS and Contact Angle Characterization of Surface Modified Cellulose Acetate Membranes by Mixtures of PMHS/PDMS. Desalination 2013, 313 (1), 208–211; https://doi.org/10.1016/j.desal.2012.11.018.Search in Google Scholar
38. Li, C.; Shi, Y.; Zhang, R.; Wang, G.; Jia, J. Effect of Surface Modifications on the Properties of UHMWPE Fibres and Their Composites. e-Polymers 2019, 19 (1), 40–49; https://doi.org/10.1515/epoly-2019-0006.Search in Google Scholar
39. Belal, A. S.; Nady, J. E.; Shokry, A.; Ebrahim, S.; Soliman, M.; Khalil, M. Superhydrophobic Functionalized Cellulosic Paper by Copper Hydroxide Nanorods for Oils Purification. Sci. Rep. 2021, 11 (1), 1–11; https://doi.org/10.1038/s41598-021-95784-z.Search in Google Scholar PubMed PubMed Central
40. Ye, T.; Li, M.; Li, X.; Chen, T.; Su, Z. Study on the Performance of Modified Banana Leaf Fiber in Removing Oil Spill from Seawater. Water Air Soil Poll 2023, 234 (4), 1–12; https://doi.org/10.1007/s11270-023-06240-9.Search in Google Scholar
41. N, B.; I, K. Removal of Oily Contaminants from Water by Using the Hydrophobic Ag Nanoparticles Incorporated Dopamine Modified Cellulose Foam. Polymers 2021, 13 (18), 3163.10.3390/polym13183163Search in Google Scholar PubMed PubMed Central
42. Dai, J.; Yao, X.; Liang, X.; Yeh, H. Y. Experimental Study of Micro-cracks in Stress Corrosion of Fiber Reinforced Composites. Polym. Test. 2006, 25 (6), 758–765; https://doi.org/10.1016/j.polymertesting.2006.05.004.Search in Google Scholar
43. Qiu, Q.; Kumosa, M. Corrosion of E-Glass Fibers in Acidic Environments. Compos. Sci. Technol. 1997, 57 (5), 497–507; .10.1016/S0266-3538(96)00158-3Search in Google Scholar
44. Nasir, V.; Karimipour, H.; Taheri-Behrooz, F.; Shokrieh, M. M. Corrosion Behaviour and Crack Formation Mechanism of Basalt Fibre in Sulphuric Acid. Corrosion Sci. 2012, 64 (0), 1–7; https://doi.org/10.1016/j.corsci.2012.06.028.Search in Google Scholar
45. Xing, D.; Chen, L.; Ma, Q.; Hao, B.; Gutnikov, S. I.; Lazoryak, B. I.; Mäder, E.; Ma, P. What Happens to Glass Fiber Under Extreme Chemical Conditions? J. Non-Cryst. Solids 2020, 548 (0), 120331; https://doi.org/10.1016/j.jnoncrysol.2020.120331.Search in Google Scholar
46. Tang, C.; Jiang, H.; Zhang, X.; Li, G.; Cui, J. Corrosion Behavior and Mechanism of Basalt Fibers in Sodium Hydroxide Solution. Materials 2018, 11 (8), 1381; https://doi.org/10.3390/ma11081381.Search in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston