Influence of Ni and NiAu-plating on hydrogen binding behavior in Al-based SiC: a density functional theory investigation
-
Yuan Dong
, Wenjing Song
, Qingxin Cui , Jingrun Wang , Nan Wang , Li Feng , Sizhen Li , Jiaqiang Zhang , Qikai Yu and Ligong Zhang
Abstract
This study investigates the influence of Ni and NiAu coatings on hydrogen binding behavior in Al-based SiC composites, critical for aerospace and electronic applications. Theoretical computations reveal distinct hydrogen migration patterns at Al/SiC, Ni/SiC, Ni/Al, and Ni/Au interfaces. Nickel plating directs hydrogen towards the coating, reducing accumulation at the SiC/Al interface. However, NiAu plating leads to hydrogen enrichment at the Ni/Au interface, necessitating dehydrogenation of the Ni layer prior to Au plating. Understanding these mechanisms is crucial for optimizing manufacturing processes and enhancing material reliability, durability, and performance in hydrogen-sensitive environments.
Acknowledgments
The numerical calculations in this paper were performed on the supercomputing system at the National Supercomputing Centre in Shenzhen. The authors are grateful to Qi Zhang for reading the manuscript and making valuable comments.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: Not applicable.
-
Data availability: Not applicable.
References
1. Okada, H.; Ishida, T. Nature 1960, 186, 152; https://doi.org/10.1038/186152a0.Search in Google Scholar
2. Zhai, Y.; Wang, H.; Cao, M.; Lin, S.; Peng, M.; Li, Y.; Wang, R. Trans. Electron Devices 2022, 70, 2897; https://doi.org/10.1109/TED.2022.3226407.Search in Google Scholar
3. He, Y.; Hu, T.; Miao, G.; Peng, L.; Yang, Z.; Wang, Q.; Yang, J.; Bai, C.; Wei, H.; Bai, H.; Wang, X.; Li, X.; Cui, W. Vacuum 224 2024, 113089; https://doi.org/10.1016/j.vacuum.2024.113089.Search in Google Scholar
4. Hefford, S.; Clark, N.; Gumbleton, R.; Porch, A. IEEE T. Instrum. Meas. 2021, 70, 1; https://doi.org/10.1109/TIM.2020.3040834.Search in Google Scholar
5. Krishnan, K. H.; John, S.; Srinivasan, K. N.; Praveen, J.; Ganesan, M.; Kavimani, P. M. Metall. Mater. Trans. A 2006, 37, 1917; https://doi.org/10.1007/s11661-006-0134-7.Search in Google Scholar
6. Cao, S.; Zhang, W.; Shao, Y.; Guo, G.; Wang, X. Chinese J. Anal. Chem. 2021, 49, 653; https://doi.org/10.19756/j.issn.0253-3820.211037.Search in Google Scholar
7. Grishin, M. V.; Gatin, A. K.; Golubev, E. K.; Dokhlikova, N. V.; Ozerin, S. A.; Sarvadii, S. Y.; Stepanov, I. G.; Slutskii, V. G.; Kharitonov, V. A.; Shub, B. R. Colloid J. 2023, 85, 16; https://doi.org/10.1134/S1061933X22600464.Search in Google Scholar
8. Wannapoklang, K.; Leelachao, S.; Lothongkum, A. W.; Lothongkum, G. Mater. Test. 2020, 62, 593; https://doi.org/10.3139/120.111521.Search in Google Scholar
9. Balčiūnaitė, A.; Zabielaitė, A.; Sukackienė, Z.; Kepenienė, V.; Šimkūnaitė, D.; Selskis, A.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Coatings 2022, 12, 850; https://doi.org/10.3390/coatings12060850.Search in Google Scholar
10. Bosko, M. L.; Dalla Fontana, A.; Cornaglia, L.; Tardit, A. M. Int. J. Hydrogen Energ. 2022, 47, 11589; https://doi.org/10.1016/j.ijhydene.2022.01.179.Search in Google Scholar
11. Chao, J. L.; Lin, S. W.; Lin, J. C.; Liu, Y. H.; Hsiao, C. Y.; Wang, F.; Li, N.; Wu, A. T. Surf. Coat. Tech. 2023, 456, 129252; https://doi.org/10.1016/j.surfcoat.2023.129252.Search in Google Scholar
12. Karthik, B. M.; Gowrishankar, M. C.; Sharma, S.; Hiremath, P.; Shettar, M.; Shetty, N. Cogent Eng. 2020, 7, 1856758; https://doi.org/10.1080/23311916.2020.1856758.Search in Google Scholar
13. Thakur, A.; Kaya, S.; Kumar, A. Appl. Sci. 2023, 13, 730; https://doi.org/10.3390/app13020730.Search in Google Scholar
14. Colkesen, P.; Kaplan, G.; Yoon, D. H. Mater. Lett. 2023, 330, 133384, https://doi.org/10.1016/j.matlet.2022.133384.Search in Google Scholar
15. Lee, H. S.; Jeon, K. Y.; Kim, H. Y.; Hong, S. H. J. Mater. Sci. 2000, 35, 6231.10.1023/A:1026749831726Search in Google Scholar
16. Chen, Z.; Ding, F.; Zhang, Z.; Liao, Q.; Qiao, Z.; Jin, Y.; Chen, M.; Wang, B. Micromachines 2024, 15, 107; https://doi.org/10.3390/mi15010107.Search in Google Scholar PubMed PubMed Central
17. Teng, F.; Yu, K.; Luo, J.; Fang, H. J.; Shi, C. L.; Dai, Y. L.; Xiong, H. Q. T. Nonferr. Metal. Soc. 2016, 26, 2647; https://doi.org/10.1016/S1003-6326-16-64358-3.Search in Google Scholar
18. Ye, H.; Liu, X. Y.; Hong, H. J. Mater. Process Techn 2008, 200, 12; https://doi.org/10.1016/j.jmatprotec.2007.10.066.Search in Google Scholar
19. Yu, H.; Díaz, A.; Lu, X.; Sun, B.; Ding, Y.; Koyama, M.; He, J.; Zhou, X.; Oudriss, A.; Feaugas, X.; Zhang, Z. Chem. Rev. 2024, 124, 6271. https://doi.org/10.1021/acs.chemrev.3c00624.Search in Google Scholar PubMed PubMed Central
20. Román-Sedano, A. M.; Campillo, B.; Villalobos, J. C.; Castillo, F.; Flores, O. Materials 2023, 16, 6622; https://doi.org/10.3390/ma16206622.Search in Google Scholar PubMed PubMed Central
21. Torresa, E.; Pencer, J.; Radforda, D. D. Comput. Mater. Sci. 2018, 152, 374; https://doi.org/10.1016/j.commatsci.2018.06.002.Search in Google Scholar
22. Zhao, D.; He, L.; Wu, L.; Xiao, Q.; Liu, C.; Chen, Y.; He, Z.; Yang, D.; Lv, M.; Cheng, Z. Micromachines-Basel 2024, 15 (2), 171; https://doi.org/10.3390/mi15020171.Search in Google Scholar PubMed PubMed Central
23. Kossoya, E.; Khoptiara, Y.; Cytermannb, C.; Shemesha, G.; Katza, H.; Sheinkopfa, H.; Cohena, I.; Eliaz, N. Corros. Sci. 2008, 50, 1481; https://doi.org/10.1016/j.corsci.2008.01.016.Search in Google Scholar
24. Ferrin, P.; Kandoi, S.; Nilekar, A. U.; Mavrikakis, M. Surf. Sci. 2012, 606, 679; https://doi.org/10.1016/j.susc.2011.12.017.Search in Google Scholar
25. Al-Khateeb, M. A.; El-Barbary, A. A. Graphene 2020, 9 (1), 1.10.4236/graphene.2020.91001Search in Google Scholar
26. Liu, Y.; Huang, Y.; Xiao, Z.; Reng, X. Metals 2017, 7 (1), 21; https://doi.org/10.3390/met7010021.Search in Google Scholar
27. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169; https://doi.org/10.1103/PhysRevB.54.11169.Search in Google Scholar PubMed
28. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15; https://doi.org/10.1016/0927-0256-96-00008-0.Search in Google Scholar
29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865; https://doi.org/10.1103/PhysRevLett.77.3865.Search in Google Scholar PubMed
30. Wang, J. W.; Gong, H. R. Int. J. Hydrogen Energy 2014, 39 (11), 6068–6075; https://doi.org/10.1016/j.ijhydene.2014.01.126.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston