Home Influence of Ni and NiAu-plating on hydrogen binding behavior in Al-based SiC: a density functional theory investigation
Article
Licensed
Unlicensed Requires Authentication

Influence of Ni and NiAu-plating on hydrogen binding behavior in Al-based SiC: a density functional theory investigation

  • Yuan Dong ORCID logo EMAIL logo , Wenjing Song , Qingxin Cui , Jingrun Wang , Nan Wang , Li Feng , Sizhen Li , Jiaqiang Zhang , Qikai Yu and Ligong Zhang
Published/Copyright: October 29, 2025
Become an author with De Gruyter Brill

Abstract

This study investigates the influence of Ni and NiAu coatings on hydrogen binding behavior in Al-based SiC composites, critical for aerospace and electronic applications. Theoretical computations reveal distinct hydrogen migration patterns at Al/SiC, Ni/SiC, Ni/Al, and Ni/Au interfaces. Nickel plating directs hydrogen towards the coating, reducing accumulation at the SiC/Al interface. However, NiAu plating leads to hydrogen enrichment at the Ni/Au interface, necessitating dehydrogenation of the Ni layer prior to Au plating. Understanding these mechanisms is crucial for optimizing manufacturing processes and enhancing material reliability, durability, and performance in hydrogen-sensitive environments.


Corresponding author: Yuan Dong, Beijing Spacecraft, China Academy of Space Technology, No.104, Youyi Road, Haidian District, Beijing, 100194, China, E-mail:

Acknowledgments

The numerical calculations in this paper were performed on the supercomputing system at the National Supercomputing Centre in Shenzhen. The authors are grateful to Qi Zhang for reading the manuscript and making valuable comments.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: Not applicable.

References

1. Okada, H.; Ishida, T. Nature 1960, 186, 152; https://doi.org/10.1038/186152a0.Search in Google Scholar

2. Zhai, Y.; Wang, H.; Cao, M.; Lin, S.; Peng, M.; Li, Y.; Wang, R. Trans. Electron Devices 2022, 70, 2897; https://doi.org/10.1109/TED.2022.3226407.Search in Google Scholar

3. He, Y.; Hu, T.; Miao, G.; Peng, L.; Yang, Z.; Wang, Q.; Yang, J.; Bai, C.; Wei, H.; Bai, H.; Wang, X.; Li, X.; Cui, W. Vacuum 224 2024, 113089; https://doi.org/10.1016/j.vacuum.2024.113089.Search in Google Scholar

4. Hefford, S.; Clark, N.; Gumbleton, R.; Porch, A. IEEE T. Instrum. Meas. 2021, 70, 1; https://doi.org/10.1109/TIM.2020.3040834.Search in Google Scholar

5. Krishnan, K. H.; John, S.; Srinivasan, K. N.; Praveen, J.; Ganesan, M.; Kavimani, P. M. Metall. Mater. Trans. A 2006, 37, 1917; https://doi.org/10.1007/s11661-006-0134-7.Search in Google Scholar

6. Cao, S.; Zhang, W.; Shao, Y.; Guo, G.; Wang, X. Chinese J. Anal. Chem. 2021, 49, 653; https://doi.org/10.19756/j.issn.0253-3820.211037.Search in Google Scholar

7. Grishin, M. V.; Gatin, A. K.; Golubev, E. K.; Dokhlikova, N. V.; Ozerin, S. A.; Sarvadii, S. Y.; Stepanov, I. G.; Slutskii, V. G.; Kharitonov, V. A.; Shub, B. R. Colloid J. 2023, 85, 16; https://doi.org/10.1134/S1061933X22600464.Search in Google Scholar

8. Wannapoklang, K.; Leelachao, S.; Lothongkum, A. W.; Lothongkum, G. Mater. Test. 2020, 62, 593; https://doi.org/10.3139/120.111521.Search in Google Scholar

9. Balčiūnaitė, A.; Zabielaitė, A.; Sukackienė, Z.; Kepenienė, V.; Šimkūnaitė, D.; Selskis, A.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Coatings 2022, 12, 850; https://doi.org/10.3390/coatings12060850.Search in Google Scholar

10. Bosko, M. L.; Dalla Fontana, A.; Cornaglia, L.; Tardit, A. M. Int. J. Hydrogen Energ. 2022, 47, 11589; https://doi.org/10.1016/j.ijhydene.2022.01.179.Search in Google Scholar

11. Chao, J. L.; Lin, S. W.; Lin, J. C.; Liu, Y. H.; Hsiao, C. Y.; Wang, F.; Li, N.; Wu, A. T. Surf. Coat. Tech. 2023, 456, 129252; https://doi.org/10.1016/j.surfcoat.2023.129252.Search in Google Scholar

12. Karthik, B. M.; Gowrishankar, M. C.; Sharma, S.; Hiremath, P.; Shettar, M.; Shetty, N. Cogent Eng. 2020, 7, 1856758; https://doi.org/10.1080/23311916.2020.1856758.Search in Google Scholar

13. Thakur, A.; Kaya, S.; Kumar, A. Appl. Sci. 2023, 13, 730; https://doi.org/10.3390/app13020730.Search in Google Scholar

14. Colkesen, P.; Kaplan, G.; Yoon, D. H. Mater. Lett. 2023, 330, 133384, https://doi.org/10.1016/j.matlet.2022.133384.Search in Google Scholar

15. Lee, H. S.; Jeon, K. Y.; Kim, H. Y.; Hong, S. H. J. Mater. Sci. 2000, 35, 6231.10.1023/A:1026749831726Search in Google Scholar

16. Chen, Z.; Ding, F.; Zhang, Z.; Liao, Q.; Qiao, Z.; Jin, Y.; Chen, M.; Wang, B. Micromachines 2024, 15, 107; https://doi.org/10.3390/mi15010107.Search in Google Scholar PubMed PubMed Central

17. Teng, F.; Yu, K.; Luo, J.; Fang, H. J.; Shi, C. L.; Dai, Y. L.; Xiong, H. Q. T. Nonferr. Metal. Soc. 2016, 26, 2647; https://doi.org/10.1016/S1003-6326-16-64358-3.Search in Google Scholar

18. Ye, H.; Liu, X. Y.; Hong, H. J. Mater. Process Techn 2008, 200, 12; https://doi.org/10.1016/j.jmatprotec.2007.10.066.Search in Google Scholar

19. Yu, H.; Díaz, A.; Lu, X.; Sun, B.; Ding, Y.; Koyama, M.; He, J.; Zhou, X.; Oudriss, A.; Feaugas, X.; Zhang, Z. Chem. Rev. 2024, 124, 6271. https://doi.org/10.1021/acs.chemrev.3c00624.Search in Google Scholar PubMed PubMed Central

20. Román-Sedano, A. M.; Campillo, B.; Villalobos, J. C.; Castillo, F.; Flores, O. Materials 2023, 16, 6622; https://doi.org/10.3390/ma16206622.Search in Google Scholar PubMed PubMed Central

21. Torresa, E.; Pencer, J.; Radforda, D. D. Comput. Mater. Sci. 2018, 152, 374; https://doi.org/10.1016/j.commatsci.2018.06.002.Search in Google Scholar

22. Zhao, D.; He, L.; Wu, L.; Xiao, Q.; Liu, C.; Chen, Y.; He, Z.; Yang, D.; Lv, M.; Cheng, Z. Micromachines-Basel 2024, 15 (2), 171; https://doi.org/10.3390/mi15020171.Search in Google Scholar PubMed PubMed Central

23. Kossoya, E.; Khoptiara, Y.; Cytermannb, C.; Shemesha, G.; Katza, H.; Sheinkopfa, H.; Cohena, I.; Eliaz, N. Corros. Sci. 2008, 50, 1481; https://doi.org/10.1016/j.corsci.2008.01.016.Search in Google Scholar

24. Ferrin, P.; Kandoi, S.; Nilekar, A. U.; Mavrikakis, M. Surf. Sci. 2012, 606, 679; https://doi.org/10.1016/j.susc.2011.12.017.Search in Google Scholar

25. Al-Khateeb, M. A.; El-Barbary, A. A. Graphene 2020, 9 (1), 1.10.4236/graphene.2020.91001Search in Google Scholar

26. Liu, Y.; Huang, Y.; Xiao, Z.; Reng, X. Metals 2017, 7 (1), 21; https://doi.org/10.3390/met7010021.Search in Google Scholar

27. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169; https://doi.org/10.1103/PhysRevB.54.11169.Search in Google Scholar PubMed

28. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15; https://doi.org/10.1016/0927-0256-96-00008-0.Search in Google Scholar

29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865; https://doi.org/10.1103/PhysRevLett.77.3865.Search in Google Scholar PubMed

30. Wang, J. W.; Gong, H. R. Int. J. Hydrogen Energy 2014, 39 (11), 6068–6075; https://doi.org/10.1016/j.ijhydene.2014.01.126.Search in Google Scholar

Received: 2024-10-16
Accepted: 2025-05-27
Published Online: 2025-10-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0275/pdf
Scroll to top button