Synthesis and characterization of carbon quantum dots obtained from the pyrolysis of the cocoa bean husk and its impregnation in electrocatalysts based on Ti and Pt
-
David A. Montilla-Agredo
, Alfonso E. Ramírez-Sanabria
, Carlos E. Ostos , Barbara C. Miranda-Morales and Johnny V. Gutiérrez-Portilla
Abstract
Carbon quantum dots (CQDs) are nanomaterials characterized by their optoelectronic properties, their fluorescent activity and their good electrical conductivity. In addition, due to their small size of between 1 and 10 nm, they can form mesoporous surfaces when impregnated in thin films of interest. These characteristics are why they were synthesized in this research, to help enhance electrochemical properties. For this, agro-industrial waste was used. In this research, we worked with cocoa bean husks (CBH), a biomass rich in lignocellulose. The biomass was subjected to pyrolysis at 350 °C for 6 h, from which a biochar was obtained that was subjected to ultrasonic exfoliation where the CQDs were finally obtained. Morphological characterizations were made using scanning electron microscopy, high resolution transmission electron microscopy and spectroscopic characterizations using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV–vis spectroscopy. The results give a yield of 4.32 ± 0.08 % in a synthesis that can be considered green, considering that no polluting or expensive reagents were used, since agro-industrial waste or residues and water was used as a solvent. High resolution transmission electron microscopy imaging allowed a size of 2.6 ± 0.7 nm of the CQDs to be obtained, consistent with the blue–violet fluorescence that shows the nanoparticles in solution. This was also observed in fluorescence spectroscopy where the emission range is 408–450 nm. When the CQDs were impregnated in Ti and Pt-based electrocatalysts, they were shown to enhance their electrochemical response. This confirmed the hypothesis regarding the improvement of electrical and morphological properties to improve electrocatalytic reactions such as oxygen evolution reaction, hydrogen adsorption and desorption.
Acknowledgments
To the company Cacao Hunters SAS (Popayan, Colombia). To the VRI project 5144, University of Cauca.
-
Research ethics: Not applicable.
-
Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Kumar, A.; Bhattacharya, T.; Mozammil Hasnain, S. M.; Kumar Nayak, A.; Hasnain, M. S. Applications of Biomass-Derived Materials for Energy Production, Conversion, and Storage. Mater. Sci. Energy Technol. 2020, 3, 905–920; https://doi.org/10.1016/j.mset.2020.10.012.Search in Google Scholar
2. Tiwari, S. K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N. Methods for the Conversion of Biomass Waste into Value-Added Carbon Nanomaterials: Recent Progress and Applications. Prog. Energy Combust. Sci. 2022, 92, 101023; https://doi.org/10.1016/j.pecs.2022.101023.Search in Google Scholar
3. Seah, C. C.; Tan, C. H.; Arifin, N. A.; Hafriz, R.; Salmiaton, A.; Nomanbhay, S.; Shamsuddin, A. Co-Pyrolysis of Biomass and Plastic: Circularity of Wastes and Comprehensive Review of Synergistic Mechanism. Res. Eng. 2023, 17, 100989; https://doi.org/10.1016/j.rineng.2023.100989.Search in Google Scholar
4. Ikram, Z.; Azmat, E.; Perviaz, M. Degradation Efficiency of Organic Dyes on CQDs as Photocatalysts: A Review. ACS Omega 2024, 9 (9), 10017–10029; https://doi.org/10.1021/acsomega.3c09547.Search in Google Scholar PubMed PubMed Central
5. Kundu, A.; Maity, B.; Basu, S. Rice Husk-Derived Carbon Quantum Dots-Based Dual-Mode Nanoprobe for Selective and Sensitive Detection of Fe3+and Fluoroquinolones. ACS Biomater. Sci. Eng. 2022, 8 (11), 4764–4776; https://doi.org/10.1021/ACSBIOMATERIALS.2C00798/SUPPL_FILE/AB2C00798_SI_001.PDF.Search in Google Scholar
6. Ramírez Sanabria, A. E.; Urbano Narváez, S.; Gutiérrez Portilla, J. V.; Torres Rodríguez, G. A. Sonochemical Synthesis of CQDs from Coffee Husk: Insights in Aggregation Mechanism, Optimization and Sustainability Analysis. Heliyon 2025, 11 (1), e41000; https://doi.org/10.1016/J.HELIYON.2024.E41000.Search in Google Scholar PubMed PubMed Central
7. Sha, R.; Solomon Jones, S.; Badhulika, S. Controlled Synthesis of Platinum Nanoflowers Supported on Carbon Quantum Dots as a Highly Effective Catalyst for Methanol Electro-Oxidation. Surf. Coat. Technol. 2019, 360, 400–408; https://doi.org/10.1016/j.surfcoat.2018.12.127.Search in Google Scholar
8. Malode, S. J.; Shanbhag, M. M.; Kumari, R.; Dkhar, D. S.; Chandra, P.; Shetti, N. P. Biomass-Derived Carbon Nanomaterials for Sensor Applications. J. Pharm. Biomed. Anal. 2023, 222, 115102; https://doi.org/10.1016/j.jpba.2022.115102.Search in Google Scholar PubMed
9. Wang, Z.; Shen, D.; Wu, C.; Gu, S. State-of-the-Art on the Production and Application of Carbon Nanomaterials from Biomass. Green Chem. 2018, 20 (22), 5031–5057; https://doi.org/10.1039/c8gc01748d.Search in Google Scholar
10. Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent Advances and Challenges in Biomass-Derived Porous Carbon Nanomaterials for Supercapacitors. Chem. Eng. J. 2020, 397, 125418; https://doi.org/10.1016/j.cej.2020.125418.Search in Google Scholar
11. Hill, S.; Galan, M. C. Fluorescent Carbon Dots from Mono- and Polysaccharides: Synthesis, Properties and Applications. Beilstein J. Org. Chem. 2017, 13, 675–693; https://doi.org/10.3762/bjoc.13.67.Search in Google Scholar PubMed PubMed Central
12. Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Krzan, M.; Ciesielski, W.; Żarska, S.; Szczepankowska, J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers (Basel) 2022, 14 (5), 948; https://doi.org/10.3390/polym14050948.Search in Google Scholar PubMed PubMed Central
13. Torres, F. G.; Gonzales, K. N.; Troncoso, O. P.; Cañedo, V. S. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar. Drugs 2023, 21 (6), 338; https://doi.org/10.3390/md21060338.Search in Google Scholar PubMed PubMed Central
14. Pires, N. R.; Santos, C. M. W.; Sousa, R. R.; De Paula, R. C. M.; Cunha, P. L. R.; Feitosa, J. P. A. Novel and Fast Microwave-Assisted Synthesis of Carbon Quantum Dots from Raw Cashew Gum. J. Braz. Chem. Soc. 2015, 26 (6), 1274–1282; https://doi.org/10.5935/0103-5053.20150094.Search in Google Scholar
15. Lim, S. Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44 (1), 362–381; https://doi.org/10.1039/c4cs00269e.Search in Google Scholar PubMed
16. Li, S. Y.; He, L. Recent Progresses of Quantum Confinement in Graphene Quantum Dots. Front. Phys. (Beijing) 2022, 17 (3), 33201; https://doi.org/10.1007/s11467-021-1125-2.Search in Google Scholar
17. Kröger, J. Quantum Confinement of Electrons at Metal Surfaces. Materials Lab 2023, 2, 230006; https://doi.org/10.54227/mlab.20230006.Search in Google Scholar
18. Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L.; Chu, P. K. Quantum Confinement Effects across Two-Dimensional Planes in MoS2 Quantum Dots. Appl. Phys. Lett. 2015, 106 (23), 233113; https://doi.org/10.1063/1.4922551.Search in Google Scholar
19. Daulbayev, C.; Sultanov, F.; Bakbolat, B.; Daulbayev, O. 0D, 1D and 2D Nanomaterials for Visible Photoelectrochemical Water Splitting. A Review. Int. J. Hydrogen Energy 2020, 45 (58), 33325–33342; https://doi.org/10.1016/j.ijhydene.2020.09.101.Search in Google Scholar
20. Otero-Martínez, C.; García-Lojo, D.; Pastoriza-Santos, I.; Pérez-Juste, J.; Polavarapu, L. Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No-Confinement to 3D and 1D Quantum Confinement. Angewandte Chemie - Int. Ed. 2021, 60 (51), 26677–26684; https://doi.org/10.1002/anie.202109308.Search in Google Scholar PubMed PubMed Central
21. Saleem, M. Quantum Mechanics; IOP Publishing: London, 2015.10.1088/978-0-7503-1206-6Search in Google Scholar
22. Piñeiro, Y.; Rivas, J.; López-Quintela, M. A. The Emergence of Quantum Confinement in Atomic Quantum Clusters. In Colloidal Foundations of Nanoscience; Elsevier Inc.: Santiago de Compostela, 2014; pp. 81–105.10.1016/B978-0-444-59541-6.00004-7Search in Google Scholar
23. Rabouw, F. T.; de Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top. Curr. Chem. 2016, 374 (5), 58; https://doi.org/10.1007/s41061-016-0060-0.Search in Google Scholar PubMed PubMed Central
24. Kong, J.; Wei, Y.; Zhou, F.; Shi, L.; Zhao, S.; Wan, M.; Zhang, X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024, 29 (9), 2002; https://doi.org/10.3390/molecules29092002.Search in Google Scholar PubMed PubMed Central
25. Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon Quantum Dot-Based Composites for Energy Storage and Electrocatalysis: Mechanism, Applications and Future Prospects. Nano Energy 2019, 66, 104093; https://doi.org/10.1016/J.NANOEN.2019.104093.Search in Google Scholar
26. Yadav, P. K.; Chandra, S.; Kumar, V.; Kumar, D.; Hasan, S. H. Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023, 13 (2), 422; https://doi.org/10.3390/CATAL13020422.Search in Google Scholar
27. Ross, S.; Wu, R. S.; Wei, S. C.; Ross, G. M.; Chang, H. T. The Analytical and Biomedical Applications of Carbon Dots and Their Future Theranostic Potential: A Review. J. Food. Drug Anal. 2020, 28 (4), 677–695; https://doi.org/10.38212/2224-6614.1154.Search in Google Scholar PubMed PubMed Central
28. John, V. L.; Nair, Y.; Vinod, T. P. Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Part. Part. Syst. Charact. 2021, 38 (11), 2100170; https://doi.org/10.1002/ppsc.202100170.Search in Google Scholar
29. Tian, L.; Li, Z.; Wang, P.; Zhai, X.; Wang, X.; Li, T. Carbon Quantum Dots for Advanced Electrocatalysis. J. Energy Chem. 2021, 55, 279–294; https://doi.org/10.1016/j.jechem.2020.06.057.Search in Google Scholar
30. Jamila, G. S.; Sajjad, S.; Leghari, S. A. K.; Kallio, T.; Flox, C. Glucose Derived Carbon Quantum Dots on Tungstate-Titanate Nanocomposite for Hydrogen Energy Evolution and Solar Light Catalysis. J. Nanostructure Chem. 2022, 12 (4), 611–623; https://doi.org/10.1007/s40097-021-00433-6.Search in Google Scholar
31. Zhang, Z.; Yi, G.; Li, P.; Zhang, X.; Fan, H.; Zhang, Y.; Wang, X.; Zhang, C. A Minireview on Doped Carbon Dots for Photocatalytic and Electrocatalytic Applications. Nanoscale 2020, 12 (26), 13899–13906; https://doi.org/10.1039/d0nr03163a.Search in Google Scholar PubMed
32. John, B. K.; Mathew, B. Nitrogen and Sulphur Co-doped Carbon Quantum Dot Integrated Bismuth Oxide Nanocomposite for Photocatalytic Degradation and Electrochemical Sensing Applications. Opt. Mater. (Amst) 2023, 139, 113819; https://doi.org/10.1016/j.optmat.2023.113819.Search in Google Scholar
33. Kırbıyık, K. Ç.; Yılmaz, T.; Toprak, A.; Büyükbekar, A.; Kuş, M.; Ersöz, M. Improved Performance with Boron-Doped Carbon Quantum Dots in Perovskite Solar Cells. J. Alloys Compd. 2022, 927, 166851; https://doi.org/10.1016/j.jallcom.2022.166851.Search in Google Scholar
34. Hui, W.; Yang, Y.; Xu, Q.; Gu, H.; Feng, S.; Su, Z.; Zhang, M.; Wang, J.; Li, X.; Fang, J.; Xia, F.; Xia, Y.; Chen, Y.; Gao, X.; Huang, W. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2020, 32 (4), e1906374; https://doi.org/10.1002/adma.201906374.Search in Google Scholar PubMed
35. Iqbal, T.; Ashraf, M.; Afsheen, S.; Masood, A.; Qureshi, M. T.; Obediat, S. T.; Hamed, M. F.; Othman, M. S. Copper Sulfide (CuS) Doped with Carbon Quantum Dots (CQD) as an Efficient Photo Catalyst. Opt. Mater. (Amst) 2022, 125, 112116; https://doi.org/10.1016/j.optmat.2022.112116.Search in Google Scholar
36. Almeida Lessa, O.; Neves Silva, F.; de Carvalho Tavares, I. M.; Carvalho Fontes Sampaio, I.; Bispo Pimentel, A.; Ferreira Leite, S. G.; Franco, M.; Galhardo Pimenta Tienne, L.; Irfan, M.; Bilal, M.; Marques dos Anjos, P. N.; Salay, L. C. Structural Alteration of Cocoa Bean Shell Fibers through Biological Treatment Using Penicillium roqueforti. Prep. Biochem. Biotechnol. 2023, 53 (9), 1154–1163; https://doi.org/10.1080/10826068.2023.2177866.Search in Google Scholar PubMed
37. Rojas, M.; Ruano, D.; Orrego-Restrepo, E.; Chejne, F. Non-Isothermal Kinetics of Cellulose, Hemicellulose, and Lignin Degradation during Cocoa Bean Shell Pyrolysis. Biomass Bioenergy 2023, 177, 106932; https://doi.org/10.1016/j.biombioe.2023.106932.Search in Google Scholar
38. Londoño-Larrea, P.; Villamarin-Barriga, E.; García, A. N.; Marcilla, A. Study of Cocoa Pod Husks Thermal Decomposition. Appl. Sci. (Switzerland) 2022, 12 (18), 9318; https://doi.org/10.3390/app12189318.Search in Google Scholar
39. Sandoval, A. J.; Barreiro, J. A.; De Sousa, A.; Valera, D.; López, J. V.; Müller, A. J. Composition and Thermogravimetric Characterization of Components of Venezuelan Fermented and Dry Trinitario Cocoa Beans (Theobroma cacao L.): Whole Beans, Peeled Beans and Shells. J. Fac. Eng. Univ. Zulia 2019, 42, 38–45; https://doi.org/10.22209/RT.V42N1A06.Search in Google Scholar
40. Wani, I.; Ramola, S.; Garg, A.; Kushvaha, V. Critical Review of Biochar Applications in Geoengineering Infrastructure: Moving beyond Agricultural and Environmental Perspectives. Biomass Convers. Biorefin. 2021, 14, 5943–5971; https://doi.org/10.1007/s13399-021-01346-8.Search in Google Scholar
41. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface Functionalized Carbogenic Quantum Dots. Small 2008, 4 (4), 455–458; https://doi.org/10.1002/smll.200700578.Search in Google Scholar PubMed
42. Tsai, W. T.; Hsu, C. H.; Lin, Y. Q.; Tsai, C. H.; Chen, W. S.; Chang, Y. T. Enhancing the Pore Properties and Adsorption Performance of Cocoa Pod Husk (CPH)-Derived Biochars via Post-Acid Treatment. Processes 2020, 8 (2), 144; https://doi.org/10.3390/pr8020144.Search in Google Scholar
43. Thyssen, G. M.; Keil, C.; Wolff, M.; Sperling, M.; Kadow, D.; Haase, H.; Karst, U. Bioimaging of the Elemental Distribution in Cocoa Beans by Means of LA-ICP-TQMS. J. Anal. At. Spectrom. 2018, 33 (2), 187–194; https://doi.org/10.1039/C7JA00354D.Search in Google Scholar
44. Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Analytical Dataset of Ecuadorian Cocoa Shells and Beans. Data Brief 2019, 22, 56–64; https://doi.org/10.1016/j.dib.2018.11.129.Search in Google Scholar PubMed PubMed Central
45. da Costa, R. S.; da Cunha, W. F.; Pereira, N. S.; Ceschin, A. M. An Alternative Route to Obtain Carbon Quantum Dots from Photoluminescent Materials in Peat. Materials 2018, 11 (9), 1492; https://doi.org/10.3390/ma11091492.Search in Google Scholar PubMed PubMed Central
46. Azam, N.; Najabat Ali, M.; Javaid Khan, T. Carbon Quantum Dots for Biomedical Applications: Review and Analysis. Front. Mater. 2021, 8, 700403; https://doi.org/10.3389/fmats.2021.700403.Search in Google Scholar
47. Šafranko, S.; Janđel, K.; Kovačević, M.; Stanković, A.; Dutour Sikirić, M.; Mandić, Š.; Széchenyi, A.; Glavaš Obrovac, L.; Leventić, M.; Strelec, I.; Aladić, K.; Jokić, S. A Facile Synthetic Approach toward Obtaining N-Doped Carbon Quantum Dots from Citric Acid and Amino Acids, and Their Application in Selective Detection of Fe(III) Ions. Chemosensors 2023, 11 (4), 205; https://doi.org/10.3390/CHEMOSENSORS11040205/S1.Search in Google Scholar
48. Behnood, R.; Sodeifian, G. Synthesis of N Doped-CQDs/Ni Doped-ZnO Nanocomposites for Visible Light Photodegradation of Organic Pollutants. J. Environ. Chem. Eng. 2020, 8 (4), 103821; https://doi.org/10.1016/j.jece.2020.103821.Search in Google Scholar
49. Alarfaj, N. A.; El-Tohamy, M. F.; Oraby, H. F. CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite. Int. J. Mol. Sci. 2018, 19 (4), 1406; https://doi.org/10.3390/ijms19041162.Search in Google Scholar PubMed PubMed Central
50. He, P.; Shi, Y.; Meng, T.; Yuan, T.; Li, Y.; Li, X.; Zhang, Y.; Fan, L.; Yang, S. Recent Advances in White Light-Emitting Diodes of Carbon Quantum Dots. Nanoscale 2020, 12 (8), 4826–4832; https://doi.org/10.1039/c9nr10958g.Search in Google Scholar PubMed
51. Cui, B.; Feng, X. T.; Zhang, F.; Wang, Y. L.; Liu, X. G.; Yang, Y. Z.; Jia, H. S. The Use of Carbon Quantum Dots as Fluorescent Materials in White LEDs. New Carbon Mat. 2017, 32 (5), 385–401; https://doi.org/10.1016/S1872-5805(17)60130-6.Search in Google Scholar
52. Arumugam, S. S.; Xuing, J.; Viswadevarayalu, A.; Rong, Y.; Sabarinathan, D.; Ali, S.; Agyekum, A. A.; Li, H.; Chen, Q. Facile Preparation of Fluorescent Carbon Quantum Dots from Denatured Sour Milk and its Multifunctional Applications in the Fluorometric Determination of Gold Ions, In Vitro Bioimaging and Fluorescent Polymer Film. J. Photochem. Photobiol. A Chem. 2020, 401, 112788; https://doi.org/10.1016/j.jphotochem.2020.112788.Search in Google Scholar
53. Arumugham, T.; Alagumuthu, M.; Amimodu, R. G.; Munusamy, S.; Iyer, S. K. A Sustainable Synthesis of Green Carbon Quantum Dot (CQD) from Catharanthus Roseus (White Flowering Plant) Leaves and Investigation of its Dual Fluorescence Responsive Behavior in Multi-Ion Detection and Biological Applications. Sustain. Mat. Technol. 2020, 23, e00138; https://doi.org/10.1016/j.susmat.2019.e00138.Search in Google Scholar
54. Kepić, D.; Marković, Z.; Jovanović, S.; Holclajtner Antunović, I.; Kleut, D.; Todorović Marković, B. Novel Method for Graphene Functionalization. Phys. Scr. 2014, 2014 (T162), 014024; https://doi.org/10.1088/0031-8949/2014/T162/014024.Search in Google Scholar
55. Zheng, C.; Huang, L.; Guo, Q.; Chen, W.; Li, W.; Wang, H. Facile One-step Fabrication of Upconversion Fluorescence Carbon Quantum Dots Anchored on Graphene with Enhanced Nonlinear Optical Responses. RSC Adv. 2018, 8 (19), 10267–10276; https://doi.org/10.1039/c8ra00390d.Search in Google Scholar PubMed PubMed Central
56. Hong, T. Z.; Xue, Q.; Yang, Z. Y.; Dong, Y. P. Great-Enhanced Performance of Pt Nanoparticles by the Unique Carbon Quantum Dot/Reduced Graphene Oxide Hybrid Supports Towards Methanol Electrochemical Oxidation. J. Power Sources 2016, 303, 109–117; https://doi.org/10.1016/j.jpowsour.2015.10.092.Search in Google Scholar
57. Kakaei, K. High Efficiency Platinum Nanoparticles Based on Carbon Quantum Dot and its Application for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42 (16), 11605–11613; https://doi.org/10.1016/j.ijhydene.2017.01.057.Search in Google Scholar
58. Ding, C.; Dong, F.; Tang, Z. Research Progress on Catalysts for the Electrocatalytic Oxidation of Methanol. ChemistrySelect 2020, 5 (42), 13318–13340; https://doi.org/10.1002/slct.202003365.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston