Abstract
The environment friendly attribute of natural fibrils is the key factor for the demand raised to solve the problems associated with synthetic fibers. This article shows the potential of Habara fibril towards potential reinforcement material with isopthalic polyester resin. Convention water-based retting is adopted for preparation and extraction of Habara fibers. Habara fibrils were etched to remove surface contaminants present in the fiber with 5 % wt/vol of NaOH solution for 1 h. The composites were fabricated using cylindrical test tubes by maintaining a volume fraction of 25/75 wt.% of habara fiber and polyester. X-ray diffraction and Fourier-transform infrared characterizations revealed the increase in crystal size of 29 % between untreated and treated Habara fiber and elimination of vital amorphous substance present in Habara fibers. Tribometry study revealed an increase in wear rate of the composites at higher load of 30 N and decrease in friction coefficient. A higher wear rate of 4.79 × 10−6 mm3 N−1 m−1 and friction coefficient of 0.28 was recorded. The development of thermal stress accounted for decrease in friction coefficient at higher load. Further shearing action resulted in detachment of fibers from the matrix. Fiber breakage and peel off accounts for increase in wear rate at higher load conditions. The morphological analysis revealed the elimination of amorphous substance remaining in the Habara fibers.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Faruk, O.; Bledzki, A. K.; Fink, H. P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000-2010. Prog. Polym. Sci. 2012, 37, 1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003.Search in Google Scholar
2. Dittenber, D. B.; Gangarao, H. V. S. Critical Review of Recent Publications on Use of Natural Composites in Infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019.Search in Google Scholar
3. Achyuthan, K. E.; Achyuthan, A. M.; Adams, P. D.; Dirk, S. M.; Harper, J. C.; Simmons, B. A.; Singh, A. K. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules 2010, 15, 8641–8688. https://doi.org/10.3390/molecules15118641.Search in Google Scholar PubMed PubMed Central
4. Rajeshkumar, G. A New Study on Tribological Performance of Phoenix Sp. Fiber-Reinforced Epoxy Composites. J. Nat. Fibers 2021, 18, 2208–2219. https://doi.org/10.1080/15440478.2020.1724235.Search in Google Scholar
5. Mahjoub, R.; Yatim, J. M.; Mohd Sam, A. R.; Raftari, M. Characteristics of Continuous Unidirectional Kenaf Fiber Reinforced Epoxy Composites. Mater. Des. 2014, 64, 640–649. https://doi.org/10.1016/j.matdes.2014.08.010.Search in Google Scholar
6. Karthi, N.; Kumaresan, K.; Rajeshkumar, G.; Gokulkumar, S.; Sathish, S. Tribological and Thermo-Mechanical Performance of Chemically Modified Musa acuminata/Corchorus capsularis Reinforced Hybrid Composites. J. Nat. Fibers 2022, 19, 4640–4653. https://doi.org/10.1080/15440478.2020.1870614.Search in Google Scholar
7. Choudhary, P. K.; Pradhan, P.; Satapathy, A. Study on Mechanical and Tribological Characteristics of Epoxy Composites Reinforced with Short Areca-Catechu Fibers. J. Nat. Fibers 2022, 19, 6602–6614. https://doi.org/10.1080/15440478.2021.1929649.Search in Google Scholar
8. Sumesh, K. R.; Saikrishnan, G.; Pandiyan, P.; Prabhu, L.; Gokulkumar, S.; Priya, A. K.; Spatenka, P.; Krishna, S. The Influence of Different Parameters in Tribological Characteristics of Pineapple/Sisal/TiO2 Filler Incorporation. J. Ind. Text. 2022, 51, 8626S–8644S. https://doi.org/10.1177/15280837211022614.Search in Google Scholar
9. Agbo, J. N.; Babayemi, A. K.; Aniagor, C. O. Impact of Fiber Treatment on Water Absorption and Mechanical Properties of Pineapple Leaf Fiber-Reinforced Polymer Composites. Next Res. 2025, 2, 100274. https://doi.org/10.1016/J.NEXRES.2025.100274.Search in Google Scholar
10. Azeez, T. O.; Onukwuli, D. O.; Nwabanne, J. T.; Banigo, A. T. Cissus populnea Fiber - Unsaturated Polyester Composites: Mechanical Properties and Interfacial Adhesion. J. Nat. Fibers 2020, 17. https://doi.org/10.1080/15440478.2018.1558159.Search in Google Scholar
11. Gurukarthik Babu, B.; Prince Winston, D.; Aravind Bhaskar, P. V.; Baskaran, R.; Narayanasamy, P. Exploration of Electrical, Thermal, and Mechanical Properties of Phaseolus vulgaris Fiber/Unsaturated Polyester Resin Composite Filled with Nano–SiO2. J. Nat. Fibers 2021, 18. https://doi.org/10.1080/15440478.2020.1724231.Search in Google Scholar
12. Kouidri, D.; Rokbi, M.; Rahmouni, Z. E.; Kherbiche, Y.; Bouchareb, S.; Mavinkere Rangappa, S.; Siengchin, S. Investigation of Mechanical and Physico-Chemical Properties of New Natural Fiber Extracted from Bassia indica Plant for Reinforcement of Lightweight Bio-Composites. Heliyon 2024, 10, e35552. https://doi.org/10.1016/J.HELIYON.2024.E35552.Search in Google Scholar
13. Gurjar, A. K.; Kulkarni, S. M.; Joladarashi, S.; Doddamani, S. Investigation of Mechanical Properties of Luffa Fibre Reinforced Natural Rubber Composites: Implications of Process Parameters. J. Mater. Res. Technol. 2024, 29, 4232–4244. https://doi.org/10.1016/J.JMRT.2024.02.133.Search in Google Scholar
14. Sheeba, K. R. J.; Priya, R. K.; Arunachalam, K. P.; Avudaiappan, S.; Flores, E. S.; Kozlov, P. Enhancing Structural, Thermal, and Mechanical Properties of Acacia pennata Natural Fibers Through Benzoyl Chloride Treatment for Construction Applications. Case Stud. Constr. Mater. 2023, 19, e02443. https://doi.org/10.1016/J.CSCM.2023.E02443.Search in Google Scholar
15. Khakpour, H.; Ayatollahi, M. R.; Akhavan-Safar, A.; da Silva, L. F. M. Mechanical Properties of Structural Adhesives Enhanced with Natural Date Palm Tree Fibers: Effects of Length, Density and Fiber Type. Compos. Struct. 2020, 237, 111950. https://doi.org/10.1016/J.COMPSTRUCT.2020.111950.Search in Google Scholar
16. Messaoui, S.; Borchani, K. E.; Ghali, L.; Guermazi, N.; Haddar, N.; Msahli, S. Effect of a New Composition Ratio and of a New Chemical Treatment on Natural Alfa Fiber/Polypropylene Composites Manufacturing and their Mechanical Properties. J. Nat. Fibers 2022, 19. https://doi.org/10.1080/15440478.2021.1993485.Search in Google Scholar
17. Singh, T.; da Silva Gehlen, G.; Ferreira, N. F.; Yesukai de Barros, L.; Lasch, G.; Poletto, J. C.; Ali, S.; Neis, P. D. Automotive Brake Friction Composite Materials Using Helinatural Grewia optiva Fibers. J. Mater. Res. Technol. 2023, 26, 6966–6983. https://doi.org/10.1016/j.jmrt.2023.09.072.Search in Google Scholar
18. Ramesh, P.; Sai Krishnan, G.; Ragu, R.; Suresh, G.; Srinivasan, S. Investigation on the Physical/Mechanical Properties of NAO Brake Friction Composites by Using Kenaf Fiber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 961 (1). https://doi.org/10.1088/1757-899X/961/1/012016.Search in Google Scholar
19. Yuvaraj, G.; Ramesh, M. Mechanical, Wear, and Hydrophobic Properties of silane-treated Corn Husk Fibre and Betel Nut Epoxy Composites. Biomass Conv. Bioref. 2023, 13, 15227–15234. https://doi.org/10.1007/s13399-023-04181-1.Search in Google Scholar
20. Paul, R.; Bhowmik, S. Adhesive Wear Behaviour of Surface Modified Bamboo Filler Reinforced Polymer Composite under Different Contact Condition. J. Natural Fibers 2022, 19, 12208–12223. https://doi.org/10.1080/15440478.2022.2054893.Search in Google Scholar
21. Gupta, A. Influence of Filler Content on Tribological Behavior of Cenopshere Flyash Filled Bamboo Fiber Reinforced Composites. J. Natural Fibers 2022, 19, 12051–12067. https://doi.org/10.1080/15440478.2022.2051666.Search in Google Scholar
22. Agbeboh, N. I.; OlaJide, J. L.; Oladele, I. O.; Babarinsa, S. O. Kinetics of Moisture Sorption and Improved Tribological Performance of Keratinous fiber-reinforced ortho-phthalic Polyester Biocomposites. J. Natural Fibers 2018, 16, 744–754. https://doi.org/10.1080/15440478.2018.1434849.Search in Google Scholar
23. Venkatesh, K.; Karthikeyan, B. Dry Sliding Friction and Wear Behavior of Ramie Fiber Reinforced Epoxy Composites. J. Natural Fibers 2020, 18, 1465–1477. https://doi.org/10.1088/2053-1591/aae69b.Search in Google Scholar
24. Hussain, H. S.; Mohd Jamir, M. R.; Abdul Majid, M. S.; Sapuan, S. M.; Yudhanto, F.; Nugroho, A. W.; Rani, M. F. H. Friction and Wear Characteristics of Furcraea foetida Fiber Reinforced Epoxy Composites. Polymer Composites 2023, 44, 8559–8577. https://doi.org/10.1002/pc.27719.Search in Google Scholar
25. Mohankumar, D.; Muthukumaran, N.; Ramesh, M.; Aravinth, P.; Anith, R.; Balaji, S. V. Effect of Fiber Orientation on Tribological Behaviour of Typha angustifolia Natural Fiber Reinforced Composites. Mater. Today: Proceedings 2022, 62, 1958–1964. https://doi.org/10.1016/j.matpr.2022.02.062.Search in Google Scholar
26. Karthi, S.; Soundararajan, R.; Arunkumar, S.; Raveen, R. R.; Shinde, T. R. Compendious Characterization Studies on the Physio Mechanical Behaviour of Habara Plant Fiber Fortified Epoxy Composites. SAE Tech. Pap. 2022, 2022-28-0538. https://doi.org/10.4271/2022-28-0538.Search in Google Scholar
27. Rajini, N.; Winowlin Jappes, J. T.; Rajakarunakaran, S.; Bennet, C. Effects of Chemical Modifications and MMT Nanoclay Addition on Transport Phenomena of Naturally Woven Coconut Sheath/Polyester Nanocomposites. Chinese J. Polym. Sci. (English Ed. 2013, 31, 1074–1086. https://doi.org/10.1007/s10118-013-1291-y.Search in Google Scholar
28. Soundarrajan, K.; Soundararajan, R.; Sathishkumar, A. Physio – Mechanical and Chemical Behaviour of Surface Modified Coconut Inflorescence Fiber. SAE Tech. Pap 2021, 17323, 1–6. 2021, Part https://doi.org/10.4271/2021-28-0275.Search in Google Scholar
29. Ganesh, S.; Lakshmanan Saraswathy, J.; Raghunathan, V.; Sivalingam, C. Extraction and Characterization Chemical Treated and Untreated Lycium ferocissimum Fiber for Epoxy Composites. J. Natural Fibers 2021, 19, 6509–6520. https://doi.org/10.1080/15440478.2021.1921667.Search in Google Scholar
30. Neto, J. S. S.; de Queiroz, H. F. M.; Aguiar, R. A. A.; Banea, M. D. A Review on the Thermal Characterisation of Natural and Hybrid Fiber Composites. Polymers (Basel) 2021, 13. https://doi.org/10.3390/polym13244425.Search in Google Scholar PubMed PubMed Central
31. Kumar, N.; Mehta, V.; Kumar, S.; Grewal, J. S.; Ali, S.; Kashyap, K.; Kumar, N.; Devi, S. Physical Mechanical, Tribological, and Thermal Properties of New Developed Composites with Grewia optiva Fiber and Pan Material. Polym. Compos. 2022, 43, 4749–4755.10.1002/pc.26726Search in Google Scholar
32. Rajini, N.; Mayandi, K.; Manoj Prabhakar, M.; Siengchin, S.; Ayrilmis, N.; Bennet, C.; O Ismail, S. Tribological Properties of Cyperus pangorei Fibre Reinforced Polyester Composites(Friction and Wear Behaviour of Cyperus Pangorei Fibre/Polyester Composites). J. Nat. Fibers 2021, 18, 261–273.10.1080/15440478.2019.1621232Search in Google Scholar
33. Chauhan, S. R.; Kumar, A.; Singh, I. Sliding Friction and Wear Behaviour of Vinylester and its Composites under Dry and Water Lubricated Sliding Conditions. Mater. Des. 2010, 31, 2745–2751. https://doi.org/10.1016/j.matdes.2010.01.020.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston