Startseite Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application

  • Tura Safawo Jarso ORCID logo , Mebrahtu Hagos Kahsay ORCID logo EMAIL logo , Solomon Balami ORCID logo , B. V. Sandeep und K. P. J. Hemalatha ORCID logo
Veröffentlicht/Copyright: 2. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work reports green synthesis of AgNPs using aqueous extract of Pupalia lappacea (L.) Juss. The synthesized AgNPs were characterized using UV–visible spectroscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy supported with energy dispersive X-ray, and transmission electron microscopy. UV–vis spectroscopy reveals a characteristic surface plasmon resonance absorption band at 420 nm. TEM results showed synthesis of spherical shaped AgNPs with an average particle size of 14.48 nm. The synthesized AgNPs exhibited excellent inhibition zones against Gram-positive bacteria Staphylococcus aureus (26.33 ± 0.88 mm), Bacillus Coagulans (12.33 ± 0.33 mm); and Gram-negative bacteria Sphingomonas (24.33 ± 0.67 mm), Shigella dysenteriae (24.33 ± 0.67 mm) and Salmonella typhimurium (12.67 ± 0.33 mm). Therefore, Pupalia lappacea mediated AgNPs can be used for clinical and medical applications.


Corresponding author: Mebrahtu Hagos Kahsay, Department of Chemistry, Mekelle University, Mekelle, Ethiopia, E-mail: , Web of Science Researcher ID: AAO-1545-2020

Acknowledgments

Authors would like to acknowledge Andhra University, India and Ministry of Education, Ethiopia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Tura Safawo Jarso: designed the manuscript, bench work, analyzed and interpreted, Mebrahtu Hagos Kahsay: Bench work, analyzed, interpreted, and edited, Solomon Balami: Interpreted and edited, BV Sandeep: guided, edited, analysed and interpreted, KPJ Hemalatha: guided, edited, analysed and interpreted.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 1–16. https://doi.org/10.1155/2011/270974.Suche in Google Scholar

2. Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10 (3), 507–517. https://doi.org/10.1007/s11051-007-9275-x.Suche in Google Scholar

3. Mustapha, T.; Misni, N.; Ithnin, N. R.; Daskum, A. M.; Unyah, N. Z. A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. Int. J. Environ. Res. Public Health 2022, 19 (2). https://doi.org/10.3390/ijerph19020674.Suche in Google Scholar PubMed PubMed Central

4. Sunkar, S.; Nachiyar, C. V. Biogenesis of Antibacterial Silver Nanoparticles Using the Endophytic Bacterium Bacillus Cereus Isolated from Garcinia Xanthochymus. Asian Pac. J. Trop. Biomed. 2012, 2 (12), 953–959. https://doi.org/10.1016/S2221-1691(13)60006-4.Suche in Google Scholar PubMed PubMed Central

5. Chaudhari, R. K.; Shah, P. A.; Shrivastav, P. S. Green Synthesis of Silver Nanoparticles Using Adhatoda Vasica Leaf Extract and its Application in Photocatalytic Degradation of Dyes. Discover Nano 2023, 18 (1), 135. https://doi.org/10.1186/s11671-023-03914-5.Suche in Google Scholar PubMed PubMed Central

6. Aliannezhadi, M.; Mirsanaee, S. Z.; Jamali, M.; Shariatmadar Tehrani, F. The Physical Properties and Photocatalytic Activities of Green Synthesized ZnO Nanostructures Using Different Ginger Extract Concentrations. Sci. Rep. 2024, 14 (1), 2035. https://doi.org/10.1038/s41598-024-52455-z.Suche in Google Scholar PubMed PubMed Central

7. Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Nat. 2014, 6 (1), 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44.Suche in Google Scholar

8. Ajazuddin; Saraf, S. Applications of Novel Drug Delivery System for Herbal Formulations. Fitoterapia 2010, 81 (7), 680–689. https://doi.org/10.1016/j.fitote.2010.05.001.Suche in Google Scholar PubMed

9. Mainardes, R. M.; Urban, M. C. C.; Cinto, P. O.; Chaud, M. V.; Evangelista, R. C.; Gremião, M. P. D. Liposomes and Micro/nanoparticles as Colloidal Carriers for Nasal Drug Delivery. Curr. Drug Delivery 2006, 3 (3), 275–285. https://doi.org/10.2174/156720106777731019.Suche in Google Scholar PubMed

10. Bonifácio, B. V.; da Silva, P. B.; Ramos, M. A. D. S.; Negri, K. M. S.; Bauab, T. M.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems and Herbal Medicines: A Review. Int. J. Nanomed. 2014, 9, 1–15. https://doi.org/10.2147/IJN.S52634.Suche in Google Scholar PubMed PubMed Central

11. Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. Bacteria as Workers in the Living Factory: Metal-Accumulating Bacteria and Their Potential for Materials Science. Trends Biotechnol. 2001, 19 (1), 15–20. https://doi.org/10.1016/s0167-7799(00)01514-6.Suche in Google Scholar PubMed

12. Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003, 85 (2), 162–170.Suche in Google Scholar

13. Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustainable Chem. 2016, 06 (01), 34–56. https://doi.org/10.4236/gsc.2016.61004.Suche in Google Scholar

14. Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638. https://doi.org/10.1039/C1GC15386B.Suche in Google Scholar

15. Padma, R. P.; Ramachandra Reddy, P. A Note on Folklore Treatment of Bone Fracture from Ranga Reddy District, Andhra Pradesh. Ethnobotany 1999, 11 (1/2), 107–108.Suche in Google Scholar

16. Reddy, C. S.; Reddy, K. N.; Murthy, E. N.; Raju, V. S. Traditional Medicinal Plants in Seshachalam Hills, Andhra Pradesh, India. J. Med. Plants Res. 2009, 3 (5), 408–412.Suche in Google Scholar

17. Ndjonka, D.; Agyare, K. C.; Luersen, K.; Hensel, A.; Liebau, E. In Vitro Anti-leishmanial Activity of Traditional Medicinal Plants from Cameroon and Ghana. Int. J. Pharmacol. 2010, 6, 863–871; https://doi.org/10.3923/ijp.2010.863.871.Suche in Google Scholar

18. Bero, J.; Ganfon, H.; Jonville, M.-C.; Frédérich, M.; Gbaguidi, F.; DeMol, P.; Moudachirou, M.; Quetin-Leclercq, J. In Vitro Antiplasmodial Activity of Plants Used in Benin in Traditional Medicine to Treat Malaria. J. Ethnopharmacol. 2009, 122 (3), 439–444. https://doi.org/10.1016/j.jep.2009.02.004.Suche in Google Scholar PubMed

19. Tamil, S. A.; Siva, S. N.; Ramadevi, M.; Sree Giri, P. B.; Santhosh, K. M. Bioactive Compound Identification, Phytochemical Estimation, In-vitro Anti-inflammatory and Antioxidant Activity of Pupalia Lappacea. Int. J. Pharmacogn.: Int. J. Pharm. Sci. Res. 2014, 1 (9), 596–604. https://doi.org/10.13040/ijpsr.0975-8232.ijp.1.Suche in Google Scholar

20. Niraimathi, K. L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera Sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf., B 2013, 102, 288–291. https://doi.org/10.1016/j.colsurfb.2012.08.041.Suche in Google Scholar PubMed

21. Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A. R. M.; Hadibarata, T.; Palvannan, T. Phyto-Synthesis of Silver Nanoparticles Using Alternanthera Tenella Leaf Extract: An Effective Inhibitor for the Migration of Human Breast Adenocarcinoma (MCF-7) Cells. Bioprocess Biosyst. Eng. 2016, 39 (4), 651–659. https://doi.org/10.1007/s00449-016-1546-4.Suche in Google Scholar PubMed

22. Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine Herbstii Leaf Aqueous Extracts. Colloids Surf., B 2012, 98, 112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006.Suche in Google Scholar PubMed

23. Kudle, K. R.; Donda, M. R.; Prashanthi, Y.; Merugu, R.; Pratap Rudra, M. P. Synthesis of Silver Nanoparticles Using the Medicinal Plant Allmania Nadiflora and Evaluation of its Anti Microbial Activities. Int. J. Life Sci. Pharma Res. 2013, 4 (4), 504–511.10.7897/2230-8407.04644Suche in Google Scholar

24. Sigamoney, M.; Shaik, S.; Govender, P.; Krishna, S. B. N.; Sershen African Leafy Vegetables as Bio-Factories for Silver Nanoparticles: A Case Study on Amaranthus Dubius C Mart. Ex Thell. S. Afr. J. Bot. 2016, 103, 230–240. https://doi.org/10.1016/j.sajb.2015.08.022.Suche in Google Scholar

25. Phanjom, P.; Ahmed, G. Effect of Different Physicochemical Conditions on the Synthesis of Silver Nanoparticles Using Fungal Cell Filtrate ofAspergillus Oryzae(MTCC No. 1846) and Their Antibacterial Effect. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017, 8 (4), 045016. https://doi.org/10.1088/2043-6254/aa92bc.Suche in Google Scholar

26. Kora, A. J.; Sashidhar, R. B.; Arunachalam, J. Gum Kondagogu (Cochlospermum Gossypium): A Template for the Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application. Carbohydr. Polym. 2010, 82 (3), 670–679. https://doi.org/10.1016/j.carbpol.2010.05.034.Suche in Google Scholar

27. Sarsar, V.; Selwal, M. K.; Selwal, K. K. Significant Parameter in the Optimization of Biosynthesis of Silver Nanoparticles Using Psidium Guajava Leaf Extract and Evaluation of Their Antimicrobial Activity against Human Pathogenic Bacteria. Int. J. Adv. Pharm. Sci. 2014, 5, 1769–1775.Suche in Google Scholar

28. Christopher, J. G.; Saswati, B.; Ezilrani, P. Optimization of Parameters for Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aegle Marmelos. Braz. Arch. Biol. Technol. 2015, 58 (5), 702–710. https://doi.org/10.1590/S1516-89132015050106.Suche in Google Scholar

29. Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T. Optimization for Rapid Synthesis of Silver Nanoparticles and its Effect on Phytopathogenic Fungi. Spectrochim. Acta, Part A 2012, 93, 95–99. https://doi.org/10.1016/j.saa.2012.03.002.Suche in Google Scholar PubMed

30. Veerasamy, R.; Xin, T. Z.; Gunasagaran, S.; Xiang, T. F. W.; Yang, E. F. C.; Jeyakumar, N.; Dhanaraj, S. A. Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities. J. Saudi Chem. Soc. 2011, 15 (2), 113–120. https://doi.org/10.1016/j.jscs.2010.06.004.Suche in Google Scholar

31. Verma, A.; Tyagi, S.; Verma, A.; Singh, J.; Joshi, P. Optimization of Different Reaction Conditions for the Bio-Inspired Synthesis of Silver Nanoparticles Using Aqueous Extract of Solanum Nigrum Leaves. J. Nanomater. Mol. Nanotechnol. 2017, 06 (02). https://doi.org/10.4172/2324-8777.1000214.Suche in Google Scholar

32. Verma, A.; Mehata, M. S. Controllable Synthesis of Silver Nanoparticles Using Neem Leaves and Their Antimicrobial Activity. J. Radiat. Res. Appl. Sci. 2016, 9 (1), 109–115. https://doi.org/10.1016/j.jrras.2015.11.001.Suche in Google Scholar

33. Ibrahim, H. M. M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8 (3), 265–275. https://doi.org/10.1016/j.jrras.2015.01.007.Suche in Google Scholar

34. Christensen, L.; Vivekanandhan, S.; Misra, M.; Mohanty, A. K. Biosynthesis of Silver Nanoparticles Using Murraya Koenigii (Curry Leaf): An Investigation on the Effect of Broth Concentration in Reduction Mechanism and Particle Size. Adv. Mater. Lett. 2011, 2 (3), 163–167. https://doi.org/10.5185/amlett.2011.4256.Suche in Google Scholar

35. Bhainsa, K. C.; D’Souza, S. F. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus Fumigatus. Colloids Surf., B 2006, 47 (2), 160–164. https://doi.org/10.1016/j.colsurfb.2005.11.026.Suche in Google Scholar PubMed

36. Kim, J. H.; Min, B. R.; Won, J.; Kang, Y. S. Effect of the Polymer Matrix on the Formation of Silver Nanoparticles in Polymer–Silver Salt Complex Membranes. J. Polym. Sci., Part B: Polym. Phys. 2006, 44 (8), 1168–1178. https://doi.org/10.1002/polb.20777.Suche in Google Scholar

37. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668–677. https://doi.org/10.1021/jp026731y.Suche in Google Scholar

38. Stepanov, A. L. Optical Properties of Metal Nanoparticles Synthesized in a Polymer by Ion Implantation: A Review. Tech. Phys. 2004, 49 (2), 143–153. https://doi.org/10.1134/1.1648948.Suche in Google Scholar

39. Shameli, K.; Ahmad, M. B.; Jazayeri, S. D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. Investigation of Antibacterial Properties Silver Nanoparticles Prepared via Green Method. Chem. Cent. J. 2012, 6 (1), 73. https://doi.org/10.1186/1752-153X-6-73.Suche in Google Scholar PubMed PubMed Central

40. Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. p. H. Dependent Changes in the Optical Properties of Carboxylic Acid Derivatized Silver Colloidal Particles. Colloids Surf., A 1997, 127 (1–3), 221–228. https://doi.org/10.1016/s0927-7757(97)00087-3.Suche in Google Scholar

41. Khan, M.; Khan, M.; Adil, S. F.; Tahir, M. N.; Tremel, W.; Alkhathlan, H. Z.; Al-Warthan, A.; Siddiqui, M. R. H. Green Synthesis of Silver Nanoparticles Mediated by Pulicaria Glutinosa Extract. Int. J. Nanomed. 2013, 8, 1507–1516. https://doi.org/10.2147/IJN.S43309.Suche in Google Scholar PubMed PubMed Central

42. Dubey, M.; Bhadauria, S.; Kushwah, B. S. Green Synthesis of Nanosilver Particles from Extract of Eucalyptus Hybrida (Safeda) Leaf. Dig. J. Nanomater. Biostruct. 2009, 4, 537–543.Suche in Google Scholar

43. Sheny, D. S.; Mathew, J.; Philip, D. Phytosynthesis of Au, Ag and Au-Ag Bimetallic Nanoparticles Using Aqueous Extract and Dried Leaf of Anacardium Occidentale. Spectrochim. Acta, Part A 2011, 79 (1), 254–262. https://doi.org/10.1016/j.saa.2011.02.051.Suche in Google Scholar PubMed

44. Lambert, J. B. Introduction To Organic Spectroscopy; Macmillan College, New York 1987.Suche in Google Scholar

45. Sanghi, R.; Verma, P. Biomimetic Synthesis and Characterisation of Protein Capped Silver Nanoparticles. Bioresour. Technol. 2009, 100 (1), 501–504. https://doi.org/10.1016/j.biortech.2008.05.048.Suche in Google Scholar PubMed

46. Chaturvedula, V. S. P.; Mubarak, C.; Prakash, I. IR Spectral Analysis of Diterpene Glycosides Isolated from Stevia Rebaudiana. Food Nutr. Sci. 2012, 03 (10), 1467–1471. https://doi.org/10.4236/fns.2012.310191.Suche in Google Scholar

47. Hajji, M.; Kouraichi, C.; Guerfel, T. Modelling, Structural, Thermal, Optical and Vibrational Studies of a New Organic–Inorganic Hybrid Material (C5H16N2)Cd1.5Cl5. Bull. Mater. Sci. 2017, 40 (1), 55–66. https://doi.org/10.1007/s12034-017-1361-9.Suche in Google Scholar

48. Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S. R.; Mandale, A. B.; Rao, M.; Sastry, M. Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir 2001, 17 (5), 1674–1679. https://doi.org/10.1021/la001164w.Suche in Google Scholar

49. Arulkumar, S.; Sabesan, M. Rapid Preparation Process of Antiparkinsonian Drug Mucuna Pruriens Silver Nanoparticle by Bioreduction and Their Characterization. Pharmacogn. Res. 2010, 2 (4), 233–236. https://doi.org/10.4103/0974-8490.69112.Suche in Google Scholar PubMed PubMed Central

50. Rolim, J. P. M. L.; de-Melo, M. A. S.; Guedes, S. F.; Albuquerque-Filho, F. B.; de Souza, J. R.; Nogueira, N. A. P.; Zanin, I. C. J.; Rodrigues, L. K. A. The Antimicrobial Activity of Photodynamic Therapy against Streptococcus Mutans Using Different Photosensitizers. J. Photochem. Photobiol., B 2012, 106, 40–46. https://doi.org/10.1016/j.jphotobiol.2011.10.001.Suche in Google Scholar PubMed

51. Periasamy, S.; Joo, H.-S.; Duong, A. C.; Bach, T.-H. L.; Tan, V. Y.; Chatterjee, S. S.; Cheung, G. Y. C.; Otto, M. How Staphylococcus Aureus Biofilms Develop Their Characteristic Structure. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (4), 1281–1286. https://doi.org/10.1073/pnas.1115006109.Suche in Google Scholar PubMed PubMed Central

52. Collins, T. L.; Markus, E. A.; Hassett, D. J.; Robinson, J. B. The Effect of a Cationic Porphyrin on Pseudomonas Aeruginosa Biofilms. Curr. Microbiol. 2010, 61 (5), 411–416. https://doi.org/10.1007/s00284-010-9629-y.Suche in Google Scholar PubMed

53. Zhang, M.; Zhang, K.; De Gusseme, B.; Verstraete, W.; Field, R. The Antibacterial and Anti-biofouling Performance of Biogenic Silver Nanoparticles by Lactobacillus Fermentum. Biofouling 2014, 30 (3), 347–357. https://doi.org/10.1080/08927014.2013.873419.Suche in Google Scholar PubMed

54. Khanal, L. N.; Sharma, K. R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G. C.; Pokharel, Y. R.; Kalauni, S. K. Green Synthesis of Silver Nanoparticles from Root Extracts of Rubus Ellipticus Sm. And Comparison of Antioxidant and Antibacterial Activity. J. Nanomater. 2022, 2022, 1–11. https://doi.org/10.1155/2022/1832587.Suche in Google Scholar

55. Kemala, P.; Idroes, R.; Khairan, K.; Ramli, M.; Jalil, Z.; Idroes, G. M.; Tallei, T. E.; Helwani, Z.; Safitri, E.; Iqhrammullah, M.; Nasution, R. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022, 27 (16). https://doi.org/10.3390/molecules27165310.Suche in Google Scholar PubMed PubMed Central

56. Giri, A. K.; Jena, B.; Biswal, B.; Pradhan, A. K.; Arakha, M.; Acharya, S.; Acharya, L. Green Synthesis and Characterization of Silver Nanoparticles Using Eugenia Roxburghii DC. Extract and Activity against Biofilm-Producing Bacteria. Sci. Rep. 2022, 12 (1), 8383. https://doi.org/10.1038/s41598-022-12484-y.Suche in Google Scholar PubMed PubMed Central

57. Mouzaki, M.; Maroui, I.; Mir, Y.; Lemkhente, Z.; Attaoui, H.; El Ouardy, K.; Lbouhmadi, R.; Mouine, H. Green Synthesis of Silver Nanoparticles and Their Antibacterial Activities. Green Process. Synth. 2022, 11 (1), 1136–1147. https://doi.org/10.1515/gps-2022-0061.Suche in Google Scholar

58. Goyal, G.; Hwang, J.; Aviral, J.; Seo, Y.; Jo, Y.; Son, J.; Choi, J. Green Synthesis of Silver Nanoparticles Using β-Glucan, and Their Incorporation into Doxorubicin-Loaded Water-In-Oil Nanoemulsions for Antitumor and Antibacterial Applications. J. Ind. Eng. Chem. 2017, 47, 179–186. https://doi.org/10.1016/j.jiec.2016.11.029.Suche in Google Scholar

59. Saqib, S.; Faryad, S.; Afridi, M. I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; Elgorban, A. M.; Syed, A.; Elansary, H. O.; El-Abedin, T. K. Z. Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus Fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Contents. Coat. World 2022, 12 (10), 1505. https://doi.org/10.3390/coatings12101505.Suche in Google Scholar

60. Khan, S.; Rukayadi, Y.; Jaafar, A. H.; Ahmad, N. H. Antibacterial Potential of Silver Nanoparticles (SP-AgNPs) Synthesized from (Wight) Walp. Against Selected Foodborne Pathogens. Heliyon 2023, 9 (12), e22771. https://doi.org/10.1016/j.heliyon.2023.e22771.Suche in Google Scholar PubMed PubMed Central

61. Bose, D.; Chatterjee, S. Biogenic Synthesis of Silver Nanoparticles Using Guava (Psidium Guajava) Leaf Extract and its Antibacterial Activity against Pseudomonas Aeruginosa. Appl. Nanosci. 2016, 6 (6), 895–901. https://doi.org/10.1007/s13204-015-0496-5.Suche in Google Scholar

62. Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20 (5), 8856–8874. https://doi.org/10.3390/molecules20058856.Suche in Google Scholar PubMed PubMed Central

63. Dakal, T. C.; Kumar, A.; Majumdar, R. S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831.Suche in Google Scholar PubMed PubMed Central

64. Yin, I. X.; Zhang, J.; Zhao, I. S.; Mei, M. L.; Li, Q.; Chu, C. H. The Antibacterial Mechanism of Silver Nanoparticles and its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.Suche in Google Scholar PubMed PubMed Central

65. Kirstein, J.; Turgay, K. A New Tyrosine Phosphorylation Mechanism Involved in Signal Transduction in Bacillus Subtilis. J. Mol. Microbiol. Biotechnol. 2005, 9 (3–4), 182–188. https://doi.org/10.1159/000089646.Suche in Google Scholar PubMed

Received: 2024-02-15
Accepted: 2024-07-11
Published Online: 2024-12-02
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0065/pdf
Button zum nach oben scrollen