Home Effect of quenching rate on the phase formation and magnetic properties of Co35Fe10Ni30Ti20Al5 high entropy alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of quenching rate on the phase formation and magnetic properties of Co35Fe10Ni30Ti20Al5 high entropy alloy

  • Shashi Kant Mohapatra , Priyanka Kumari and Rohit R. Shahi EMAIL logo
Published/Copyright: May 22, 2025
Become an author with De Gruyter Brill

Abstract

The annealing temperature, its duration and quenching rate may play a significant role in tuning the functional properties of high entropy alloys (HEAs). In the present work, Co35Fe10Ni30Ti20Al5 HEA is investigated for the effect of different quenching rates on the phase evolution and magnetic properties. The Co35Fe10Ni30Ti20Al5 HEA was synthesized through mechanical alloying and subsequently annealed at 700 °C for 2 h followed by quenching through different rates-furnace cooled, room temperature (RT-) cooled, ice-bath quenched and liquid-N2 quenched separately. The as-synthesized sample exhibited a mixture of fcc, bcc and a slight content of R-phase. The synthesized phase was found to be maintained after quenching at different rates. The magnetic behavior measured for different samples confirmed the characteristic ferromagnetic nature having coercivity in the range of semi-hard magnetic material. We found variation in the volume phase fraction of the secondary bcc phase and the value of coercivity with the variation of the quenching rate. This study may provide an appropriate idea of the quenching rate for tuning the magnetic property of HEAs.


Corresponding author: Rohit R. Shahi, Functional and Energy Materials Research Laboratory, Department of Physics, Central University of South Bihar, Gaya, Bihar, 824236, India, E-mail:

Acknowledgments

The authors would like to acknowledge the characterization facility of CUSB Gaya and UGC-DAE-CSR, Indore. The authors thank Dr. R.J. Choudhary, UGC-DAE-CSR Indore, for his valuable input and discussion in the present investigations. The authors would also like to acknowledge the financial support from UGC-DAE-CSR through collaborative research scheme project no. CRS/2021–2022/01/381 at CUSB Gaya.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: UGC-DAE-CSR, Indore, India CRS/2021–2022/01/381.

  7. Data availability: Data will be made available on request.

References

1. Murty, B. S.; Yeh, J. W.; Ranganathan, S.; Bhattacharjee, P. P. High Entropy Alloys, 2nd ed.; Elsevier: Netherlands, United Kingdom, United States, 2019.Search in Google Scholar

2. Yeh, J. W.; Cen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299–303; https://doi.org/10.1002/adem.200300567.Search in Google Scholar

3. Kumari, P.; Gupta, A. K.; Mohapatra, S. K.; Shahi, R. R.; Singh, D. K.; Singh, S.; Singh, P., Eds. Nanomaterials; Springer: Singapore, 2023.Search in Google Scholar

4. Kumari, P.; Gupta, A. K.; Mishra, R. K.; Ahmad, M. S.; Shahi, R. R. J. Magn. Magn. Mater. 2022, 554, 169142; https://doi.org/10.1016/j.jmmm.2022.169142.Search in Google Scholar

5. Mohapatra, S. K.; Kumari, P.; Shahi, R. R.; Yasin, G.; Khan, M. A.; Afifi, M. A.; Nguyen, T. A.; Zhang, Y., Eds. High-Entropy Alloys; Elsevier: Netherlands, United Kingdom, United States, 2024.Search in Google Scholar

6. Kumari, P.; Mishra, R. K.; Gupta, A. K.; Mohapatra, S. K.; Shahi, R. R. J. Alloy and Compd. 2023, 931, 167451; https://doi.org/10.1016/j.jallcom.2022.167451.Search in Google Scholar

7. Kumari, P.; Kumar, A.; Mishra, R. K.; Shaz, M. A.; Yadav, T. P.; Shahi, R. R. J. Alloy and Compd. 2023, 960, 170697; https://doi.org/10.1016/j.jallcom.2023.170697.Search in Google Scholar

8. Shahi, R. R.; Mishra, R. K.; Srivatsan, T. S.; Gupta, M., Eds. High Entropy Alloys: Innovations, Advances and Applications; CRC Press: Boca Raton, 2020.10.1201/9780367374426-22Search in Google Scholar

9. Mishra, R. K.; Kumari, P.; Gupta, A. K.; Shahi, R. R. Proc. Indian Natl. Sci. Acad. 2023, 89, 347–354; https://doi.org/10.1007/s43538-023-00160-2.Search in Google Scholar

10. Mishra, R. K.; Shahi, R. R.; Singh, A. R.; Sahay, P. P. Emer. Mater 2020, 3 (5), 655–662; https://doi.org/10.1007/s42247-020-00110-4.Search in Google Scholar

11. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2020, 516, 167342; https://doi.org/10.1016/j.jmmm.2020.167342.Search in Google Scholar

12. Mishra, R. K.; Kumari, P.; Gupta, A. K.; Shahi, R. R. J. Alloy. Compd. 2021, 889, 161773; https://doi.org/10.1016/j.jallcom.2021.161773.Search in Google Scholar

13. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2018, 465, 169–175; https://doi.org/10.1016/j.jmmm.2018.04.056.Search in Google Scholar

14. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2017, 442, 218–223; https://doi.org/10.1016/j.jmmm.2017.06.124.Search in Google Scholar

15. Mishra, R. K.; Shahi, R. R. J. Alloy. Compd. 2020, 821, 153534; https://doi.org/10.1016/j.jallcom.2019.153534.Search in Google Scholar

16. Mohapatra, S. K.; Kumari, P.; Shahi, R. R. Appl. Phys. A 2024, 130 (450), 1–16; https://doi.org/10.1007/s00339-024-07621-5.Search in Google Scholar

17. Zuo, T.; Gao, M. C.; Ouyang, L.; Yang, X.; Cheng, Y.; Feng, R.; Chen, S.; Liaw, P. K.; Hawk, J. A.; Zhang, Y. Acta Mater. 2017, 130, 10–18; https://doi.org/10.1016/j.actamat.2017.03.013.Search in Google Scholar

18. Zhou, K. X.; Sun, B. R.; Liu, G. Y.; Li, X. W.; Xin, S. W.; Liaw, P. K.; Shen, T. D. Intermetallics 2020, 122, 106801; https://doi.org/10.1016/j.intermet.2020.106801.Search in Google Scholar

19. Oboz, M.; Zajdel, P.; Zubko, M.; Swiec, P.; Szubka, M.; Kadziolka-Gawel, M.; Maximenko, A.; Trump, B. A.; Yakovenko, A. A. J. Magn. Magn. Mater. 2024, 589, 171506; https://doi.org/10.1016/j.jmmm.2023.171506.Search in Google Scholar

20. Orbay, Y.; Rao, Z.; Çakır, A.; Tavşanoğlu, T.; Farle, M.; Acet, M. Acta Mater. 2023, 259; https://doi.org/10.1016/j.actamat.2023.119240.Search in Google Scholar

21. Duan, J.; Wang, M.; Huang, R.; Miao, J.; Lu, Y.; Wang, T.; Li, T. Sci. China Mater. 2023, 66, 772–779; https://doi.org/10.1007/s40843-022-2171-5.Search in Google Scholar

22. Wang, M.; Lu, Y.; Zhang, G.; Cui, H.; Xu, D.; Wei, N.; Li, T. Vacuum 2021, 184, 109905; https://doi.org/10.1016/j.vacuum.2020.109905.Search in Google Scholar

23. Babilas, R.; Lonski, W.; Borylo, P.; Kadziolka-Gawel, M.; Gebara, P.; Radon, A. J. Magn Magn Mater 2020, 502, 166492; https://doi.org/10.1016/j.jmmm.2020.166492.Search in Google Scholar

24. Jiang, S.; Lin, Z.; Xu, H.; Sun, Y. J. Alloys Compd. 2018, 74 (1), 826–833; https://doi.org/10.1016/j.jallcom.2018.01.247.Search in Google Scholar

25. Xiao, D. H.; Zhou, P. F.; Wu, W. Q.; Diao, H. Y.; Gao, M. C.; Song, M.; Liaw, P. K. Mater. Des. 2017, 116, 438–447; https://doi.org/10.1016/j.matdes.2016.12.036.Search in Google Scholar

26. Li, Z.; Gu, Y.; Wang, C.; Pan, M.; Zhang, H.; Wu, Z.; Hou, X.; Tan, X.; Xu, H. J. Alloy. Compd. 2019, 779, 293–300; https://doi.org/10.1016/j.jallcom.2018.11.235.Search in Google Scholar

27. Gong, M.; Qu, H.; Xu, C.; Guo, W.; Wang, K.; Liu, F.; Bai, J.; Gao, Q.; Zhao, X.; Li, S. Trans. Indian Inst. Met. 2022, 75 (8), 1951–1956; https://doi.org/10.1007/s12666-022-02665-8.Search in Google Scholar

28. Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. J. Alloy. Compd. 2016, 683, 221–230; https://doi.org/10.1016/j.jallcom.2016.05.034.Search in Google Scholar

29. Kim, D. G.; Jo, Y. H.; Park, J. M.; Choi, W. M.; Kim, H. S.; Lee, B. J.; Sohn, S. S.; Lee, S. J. Alloy. Compd. 2020, 812, 152111; https://doi.org/10.1016/j.jallcom.2019.152111.Search in Google Scholar

30. Jia, J.; Wu, Y.; Shi, L.; Wang, R.; Guo, W.; Bu, H.; Shao, Y.; Chen, N.; Yao, K. Materials 2024, 17, 1447; https://doi.org/10.3390/ma17061447.Search in Google Scholar PubMed PubMed Central

31. Murugaiyan, P.; Mitra, A.; Das, S.; Kamaraj, A.; Roy, R. K.; Panda, A. K. J. Supercond. Nov Magn. 2024, 37, 1635–1646; https://doi.org/10.1007/s10948-024-06789-4.Search in Google Scholar

32. Takeuchi, A.; Inoue, A. Mater. Trans. 2005, 46 (12), 2817–2829; https://doi.org/10.2320/matertrans.46.2817.Search in Google Scholar

33. Shahi, R. R.; Yadav, T. P.; Shaz, M. A.; Srivastava, O. N. Int. J. Hydrogen Energy 2008, 33, 6188–6194; https://doi.org/10.1016/j.ijhydene.2008.07.029.Search in Google Scholar

34. Reed-Hill, R. E.; Abbaschian, R. Physical Metallurgy Principles, 3rd ed.; PWS-KENT Publishing Company: Boston, 1994; pp. 140–146.Search in Google Scholar

35. Guo, S.; Liu, C. T. Prog. Nat. Sci.: Met. Mater. Int. 2011, 21, 433–446; https://doi.org/10.1016/S1002-0071(12)60080-X.Search in Google Scholar

36. Guo, S.; Ng, C. P.; Lu, J.; Liu, C. T. J. Appl. Phys. 2011, 109, 103505. 1–5; https://doi.org/10.1063/1.3587228.Search in Google Scholar

37. Singh, A. K.; Kumar, N.; Dwivedi, A.; Subramaniam, A. Intermetallics 2014, 53, 112–119; https://doi.org/10.1016/j.intermet.2014.04.019.Search in Google Scholar

38. Kulkarni, R.; Murty, B. S.; Srinivas, V. J. Alloy. Compd. 2018, 746, 194–199; https://doi.org/10.1016/j.jallcom.2018.02.275.Search in Google Scholar

39. Sahu, P.; Samal, S.; Kumar, V. Materialia 2021, 18, 101133; https://doi.org/10.1016/j.mtla.2021.101133.Search in Google Scholar

40. Mishra, S. S.; Bajpai, A.; Biswas, K. J. Alloy. Compd. 2021, 871, 159572; https://doi.org/10.1016/j.jallcom.2021.159572.Search in Google Scholar

41. Chakraborty, A.; Hirian, R.; Kapun, G.; Pop, V. Nanomaterials 2020, 10, 1308; https://doi.org/10.3390/nano10071308.Search in Google Scholar PubMed PubMed Central

42. Sahu, P.; Samal, S.; Kumar, V. Met. Mater. Int. 2023; https://doi.org/10.1007/s12540-023-01408-8.Search in Google Scholar

Received: 2024-01-08
Accepted: 2024-11-21
Published Online: 2025-05-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0015/html
Scroll to top button