Home A new diffusion mechanism for self-compensating impurities in α-alumina
Article
Licensed
Unlicensed Requires Authentication

A new diffusion mechanism for self-compensating impurities in α-alumina

  • Eliette-Geneviève Gontier-Moya , Fernand Moya and Jean Bernardini EMAIL logo
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

Cation diffusion in α-alumina has been the subject of recent investigations, self-diffusion by the radiotracer technique and impurity diffusion by the SIMS technique. A review of the data is carried out to clarify the bulk diffusion mechanisms. Aluminium, cobalt, chromium, and yttrium exhibit a “normal” behaviour, which can be accounted for by an extrinsic vacancy diffusion mechanism. Silver, copper, and platinum behave as “fast diffusers”, although their activation energies are close to those of the other elements. From new experiments on magnesium diffusion reported in this paper, it is suggested that fast diffusion can be traced to self-compensating impurities. A diffusion mechanism which reconciles all the observations is proposed for these elements.


Dr. Jean Bernardini L2MP, case 142 Faculté de St Jérôme, 13397 Marseille Cedex 20, France Tel.: +33 4 91 28 8566 Fax: +33 4 91 28 8314

Acknowledgement

The works reported in this paper have been supported by many discussions and collaborations. We would like to thank especially Gabor Erdélyi, Chantal Grattepain, Denise Juvé, Bernard Lesage, Abderrhamane Si Ahmed, and Daniel Treheux for their valuable contributions. This research has benefited from the stimulating atmosphere created by the “Defects and Diffusion” international community. We are happy to take this opportunity to congratulate an eminent member of this community, Professor Helmut Mehrer, University of Münster, Germany, on his birthday.

References

[1] E. Dorre, H. Hubner: Alumina, Processing, Properties and Applications, Springer-Verlag, Berlin (1984).10.1007/978-3-642-82304-6Search in Google Scholar

[2] A.H. Heuer, K.P.D. Lagerlöf: Phil. Mag. Letters 79 (1999) 619.10.1080/095008399177002Search in Google Scholar

[3] J.H. Harding, K.J.W. Atkinson, R.W. Grimes: J. Am. Ceram. Soc. 86 (2003) 554.10.1111/j.1151-2916.2003.tb03340.xSearch in Google Scholar

[4] C.J. Dienes, D.O. Welch, C.R. Fisher, R.D. Hatcher, O. Lazareth, M. Samberg: Phys. Rev. B 11 (1975) 3060.10.1103/PhysRevB.11.3060Search in Google Scholar

[5] R.C. Catlow, R. James, W.C. Mackrodt, R.F. Stewart: Phys. Rev. B 25 (1982) 1006.10.1103/PhysRevB.25.1006Search in Google Scholar

[6] P.W. Jacobs, E.A. Kotomin: Phil. Mag. A 68 (1993) 695.10.1080/01418619308213992Search in Google Scholar

[7] R.W. Grimes: J. Am. Ceram. Soc. 77 (1994) 378.10.1111/j.1151-2916.1994.tb07005.xSearch in Google Scholar

[8] K.J.W. Atkinson, R.W. Grimes, M.R. Levy, Z.L. Coull, T. English: J. of the Eur. Cer. Soc. 23 (2003) 3059.10.1016/S0955-2219(03)00101-8Search in Google Scholar

[9] F.A. Kröger: Adv. in Ceramics 10 (1984) 100.10.1007/BF03273740Search in Google Scholar

[10] K.P.D. Lagerlöf, R.W. Grimes: Acta Mater. 46 (1998) 5689.10.1016/S1359-6454(98)00256-0Search in Google Scholar

[11] A.E. Paladino, W.D. Kingery: J. of Chem. Phys. 37 (1962) 957.10.1063/1.1733252Search in Google Scholar

[12] B. Lesage, A.M. Huntz, G. Petot-Ervas: Rad. Effects 75 (1983) 283.10.1080/00337578308224712Search in Google Scholar

[13] M. Le Gall, B. Lesage, J. Bernardini: Phil. Mag. A 70 (1994) 761.10.1080/01418619408242929Search in Google Scholar

[14] E.G. Moya, F. Moya, A. Sami, D. Juvé, D. Treheux, C. Grattepain: Phil. Mag. A 72 (1995) 861.10.1080/01418619508239939Search in Google Scholar

[15] E.G. Moya, F. Moya, B. Lesage, M.K. Loudjani, C. Grattepain: J. of the Eur. Cer. Soc. 18 (1998) 591.10.1016/S0955-2219(97)00170-2Search in Google Scholar

[16] E.G. Gontier-Moya, G. Erdélyi, F. Moya, K. Freitag: Phil. Mag. A 80 (2001) 2665.10.1080/01418610108216662Search in Google Scholar

[17] F. Bondioli, A.M. Ferrari, C. Leonelli, T. Manfredi, L. Linati, P. Mustarelli: J. Am. Ceram. Soc. 83 (2000) 2036.10.1111/j.1151-2916.2000.tb01508.xSearch in Google Scholar

[18] B. Serier, A. Berroug, D. Juve, D. Treheux, E.G. Moya: J. of the Eur. Cer. Soc. 12 (1993) 385.10.1016/0955-2219(93)90008-FSearch in Google Scholar

[19] F. Moya, E.G. Gontier-Moya, D. Juve, D. Treheux, C. Grattepain, M. Aucouturier: Scripta Met. et Mater. 28 (1993) 343.10.1016/0956-716X(93)90439-YSearch in Google Scholar

[20] L. Badrour, E.G. Moya, J. Bernardini, F. Moya: J. of Phys. and Chem. of Solids 50 (1989) 551.10.1016/0022-3697(89)90447-2Search in Google Scholar

[21] E.G. Gontier-Moya, J. Bernardini, F. Moya: Acta Mater. 49 (2001) 637.10.1016/S1359-6454(00)00357-8Search in Google Scholar

[22] H. Amenzou, G. Moya, J. Bernardini: Acta Metall. 36 (1988) 767.10.1016/0001-6160(88)90110-1Search in Google Scholar

[23] A. Almazouzi, J. Bernardini, E.G. Moya, H. Bracht, N.A. Stolwijk, H. Mehrer: J. Appl. Phys. 70 (1991) 1345.10.1063/1.349591Search in Google Scholar

[24] K. Ando: Advances in Ceramics 23 (1987) 149.10.1016/0065-227X(87)90007-4Search in Google Scholar

[25] K. Ando: JJAP Series 2, Lattice Defects in Ceramics, 113–123 (1989).Search in Google Scholar

[26] J. Philibert: Atom movements, Diffusion and mass transport in solids, Editions de Physique, Les Ulis (1991) 25.Search in Google Scholar

[27] S.J. Bennison, M.P. Harmer: Ceramic Transactions 7 (1990) 13.Search in Google Scholar

[28] F.C. Frank, D. Turnbull: Phys. Rev. 104 (1956) 617.10.1103/PhysRev.104.617Search in Google Scholar

[29] U. Gösele, W. Frank, A. Seeger: Appl. Phys. 23 (1980) 361.10.1007/BF00903217Search in Google Scholar

[30] H. Bracht: MRS Bulletin 25, Vol. 6 (2000) 22.10.1557/mrs2000.94Search in Google Scholar

Received: 2004-06-02
Accepted: 2004-07-14
Published Online: 2022-02-15

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Editorial
  3. Helmut Mehrer 65 Years
  4. Articles Basic
  5. Diffusion in intermetallic compounds: the ordered Cu3Au rule, its history
  6. Live long and prosper: Long positronium lifetimes in borate glasses
  7. Atomic defects and diffusion in intermetallic compounds with D03 structure: an ab-initio study
  8. Relationships between chemical and tracer diffusion coefficients in strongly ionic crystals
  9. Formation volume of atomic vacancies in body-centred cubic metals
  10. “Order-order” relaxations in intermetallics
  11. A new diffusion mechanism for self-compensating impurities in α-alumina
  12. Self-diffusion behaviour and microstructure of ultrafine-grained Nd2Fe14B with intergranular melting transition
  13. Tracer diffusion in Pt3Fe ordered alloys
  14. Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples
  15. Ionic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure
  16. Some novel applications of sputtering techniques for diffusion studies in solids
  17. Grain boundary faceting close to the Σ3 coincidence misorientation in copper
  18. Grain boundary self-diffusion in α-iron of different purity: effect of dislocation enhanced diffusion
  19. Connection between Fe grain boundary segregation in Al and phase formation in the bulk
  20. Diffusion in metallic glasses and undercooled metallic melts
  21. Sculptures depicting the physical processes which govern the plastic deformation of metals and alloys
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. Conferences/Konferenzen
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0166/html
Scroll to top button