Home Pulse echo method for characterizing the ultrasonic properties of argan oil compared to vegetable oils with similar fatty acid profiles
Article
Licensed
Unlicensed Requires Authentication

Pulse echo method for characterizing the ultrasonic properties of argan oil compared to vegetable oils with similar fatty acid profiles

  • Mohamed Ettahiri ORCID logo EMAIL logo , Adil Hamine , El houssaine Ouacha , Hicham Mesbah and Mounir Tafkirte
Published/Copyright: August 21, 2024

Abstract

This study investigates the use of a non-destructive ultrasonic pulse-echo method to characterize argan oil and other vegetable oils with similar fatty acid profiles. Ultrasonic parameters such as velocity, acoustic attenuation and reflection coefficient were measured across different temperatures. These parameters were used to create predictive models of ultrasonic velocity using partial least squares regression. Results demonstrated significant correlations between ultrasonic properties, oil temperature and fatty acid content. Specifically, ultrasonic velocity was found to be directly proportional to the content of saturated fatty acids and inversely proportional to the content of monounsaturated and polyunsaturated fatty acids. The reflection coefficient was also found to correlate with the fatty acid composition and temperature of the oils. Additionally, both ultrasonic velocity and acoustic attenuation decreased as the temperature increased from 25 °C to 50 °C. At 25 °C, the acoustic attenuation for argan oil was 22.37 Np/m, decreasing to 11.37 Np/m at 50 °C. These correlations allowed for the differentiation between food-grade argan oil, argan oil from seeds regurgitated by goats, sesame oil and peanut oil. The developed predictive models exhibited high coefficients of determination, with a value of 97.03 for argan oil, indicating strong agreement between measured and predicted ultrasonic velocities. This research highlights the potential of ultrasonic techniques for oil characterization and quality control.


Corresponding author: Mohamed Ettahiri, Laboratory of Metrology and Information Processing, Faculty of Science, Ibn Zohr University, Agadir B.P.8106, Morocco, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Guillaume, D, Charrouf, Z. Argan oil and other argan products: use in dermocosmetology. Eur J Lipid Sci Technol 2011;113:403–8. https://doi.org/10.1002/ejlt.201000417.Search in Google Scholar

2. Matthäus, B, Guillaume, D, Gharby, S, Haddad, A, Harhar, H, Charrouf, Z. Effect of processing on the quality of edible argan oil. Food Chem 2010;120:426–32. https://doi.org/10.1016/j.foodchem.2009.10.023.Search in Google Scholar

3. Harhar, H, Gharby, S, Kartah, B, Guillaume, D, Charrouf, Z. Influence de la manipulation des fruits sur la qualité de l’huile d’argan. In Actes du 2ème Congrès Int l’Arganier 2013.Search in Google Scholar

4. Cuvelier, ME, Maillard, MN. Stabilité des huiles alimentaires au cours de leur stockage. OCL Oilseeds fats Crop lipids 2012;19:125–32. https://doi.org/10.1051/ocl.2012.0440.Search in Google Scholar

5. Bougrini, M, Tahri, K, Haddi, Z, Saidi, T, El Bari, N, Bouchikhi, B, et al.. Detection of adulteration in argan oil by using an electronic nose and a voltammetric electronic tongue. J Sens 2014;2014. https://doi.org/10.1155/2014/245831.Search in Google Scholar

6. Harhar, H, Gharby, S, Ghanmi, M, Monfalouti, HE, Guillaume, D, Charrouf, Z. Composition of the essential oil of Argania spinosa (Sapotaceae) fruit pulp. Nat Prod Commun 2010;5:935–6. https://doi.org/10.1177/1934578x1000500626.Search in Google Scholar

7. El, MM, Kharbach, M, Cherrah, Y, De Braekeleer, K, Bouklouze, A, Vander Heyden, Y. Quality control and authentication of argan oils: application of advanced analytical techniques. Molecules 2023;28:1818. https://doi.org/10.3390/molecules28041818.Search in Google Scholar PubMed PubMed Central

8. Steidle Neto, AJ, Lopes, DC. Discrimination of powdered herbal teas by Vis/NIR spectral reflectance and chemometrics. Int J Food Eng 2023;19:539–49. https://doi.org/10.1515/ijfe-2022-0311.Search in Google Scholar

9. Song, Y, Han, J, Jiang, X, Sun, Y, Jiang, B. Experimental parameters for the preparation of Mn/TiO2 catalysts by ultrasonic spray pyrolysis method for selective catalytic reduction of NOx at low temperature. Chem Phys Impact 2023;7:100258. https://doi.org/10.1016/j.chphi.2023.100258.Search in Google Scholar

10. Hirnschrodt, M, Jena, A, Vontz, T, Fischer, B, Lerch, R. Ultrasonic characterization of liquids using resonance antireflection. Ultrasonics 2000;38:200–5. https://doi.org/10.1016/s0041-624x(99)00050-5.Search in Google Scholar PubMed

11. Hamine, A, Faiz, B, Izbaim, D, Moudden, A. Ultrasonic technique for the quality control of water containing clay. Proc Eur Conf Noise Control 2008;123:2127–32. https://doi.org/10.1121/1.2933468.Search in Google Scholar

12. Tafkirte, M, Hamine, A, Mesbah, H, Ettahiri, M, Décultot, D. A numerical investigation of longitudinal wave for thermo-acoustoelastic effects on fluid-embedded in two viscoelastic layer plates at higher temperatures. Mech Syst Signal Process 2024;220:111634. https://doi.org/10.1016/j.ymssp.2024.111634.Search in Google Scholar

13. Le, M, Lee, J. Ultrasonic testing of corrosion in aircraft rivet using spiking neural network. J Nondestr Eval 2023;42:78. https://doi.org/10.1007/s10921-023-00990-6.Search in Google Scholar

14. Tafkirte, M, Hamine, A, Mesbah, H, Ettahiri, M, Mehdi Akhatar, E. Time-frequency simulation of ultrasonic longitudinal wave propagation in rocks. Mater Today Proc 2023;646. https://doi.org/10.1016/j.matpr.2023.03.646.Search in Google Scholar

15. Banouni, H, Khatib, N, Ouacha, EH, Faiz, B, Aboudaoud, I, Mesbah, H. Ultrasound non-destructive characterization of early hydration of cement pastes: the effects of water-cement ratio and curing temperature. Ann Chim Sci des Mater 2022;46:307–12. https://doi.org/10.18280/acsm.460604.Search in Google Scholar

16. Mesbah, H, Lotfi, H, Tafkirte, M, Banouni, H, Ettahiri, M, P, J, et al.. Ultrasonic velocity and density measurement for mortar characterization: investigation of correlations with mortar porosity and sand grain size. J Build Pathol Rehabil 2024;9:117. https://doi.org/10.1007/s41024-024-00473-9.Search in Google Scholar

17. Wang, X, Han, M, Peng, C, Xie, A, Fan, X, Liu, Y. Moisture distribution change and quality characteristics of ultrasound enhanced heat pump drying on carrot. Int J Food Eng 2024;20:583–600. https://doi.org/10.1515/ijfe-2024-0050.Search in Google Scholar

18. Ouacha, E, Faiz, B, Moudden, A, Aboudaoud, I, Banouni, H, Boutaib, M, et al.. Non-destructive characterization of the air influence on the UHT milk quality by ultrasonic technique. In Proc. 2015 Int. Conf. Electr. Inf. Technol. ICEIT 2015;2015;pp 296–9.10.1109/EITech.2015.7162974Search in Google Scholar

19. Ettahiri, M, Hamine, A, Ouacha, EH, Mesbah, H, Tafkirte, M. An ultrasound approach to characterize mixtures of vegetable oils with the same type of dominant chemical compositions. Appl Food Res 2024:100430. https://doi.org/10.1016/j.afres.2024.100430.Search in Google Scholar

20. Izbaim, D, Faiz, B, Hamine, A, Taifi, N, Moudden, A. Development of a system using ultrasonic waves for assessing the quality of frying oil and salad oil during frying. J Acoust Soc Am 2008;123:3837. https://doi.org/10.1121/1.2935633.Search in Google Scholar

21. Alouache, B, Laux, D, Hamitouche, A, Bachari, K, Boutkedjirt, T. Ultrasonic characterization of edible oils using a generalized fractional model. Appl Acoust 2018;131:70–8. https://doi.org/10.1016/j.apacoust.2017.10.014.Search in Google Scholar

22. Lacombe, N, Casabianca, F. Pâturer l’arganeraie: Le chevreau face à l’huile d’argan. Signe d’origine, protection de l’environnement et développement rural au Maroc. Tech Cult Rev Semest d’anthropologie des Tech 2015;63:130–45. https://doi.org/10.4000/tc.7438.Search in Google Scholar

23. Rueda, A, Seiquer, I, Olalla, M, Giménez, R, Lara, L, Cabrera-Vique, C. Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography and discriminant analysis. J Chem 2014;2014. https://doi.org/10.1155/2014/843908.Search in Google Scholar

24. Guillaume, D, Hilali, M, Soulhi, AEA, Hachimi, L, Charrouf, Z. Authenticité de l’huile d’argane et influence de l’origine sur sa composition chimique. Levier du développement Hum du milieu Rural Maroc 2007:28.Search in Google Scholar

25. Khallouki, F, Younos, C, Soulimani, R, Oster, T, Charrouf, Z, Spiegelhalder, B, et al.. Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects. Eur J Cancer Prev 2003;12:67–75. https://doi.org/10.1097/00008469-200302000-00011.Search in Google Scholar PubMed

26. Marfil, R, Cabrera-Vique, C, Giménez, R, Bouzas, PR, Martínez, O, Sánchez, JA. Metal content and physicochemical parameters used as quality criteria in virgin argan oil: influence of the extraction method. J Agric Food Chem 2008;56:7279–84. https://doi.org/10.1021/jf801002w.Search in Google Scholar PubMed

27. Ouacha, EH, Leghrib, R, Khatib, N, Faiz, B, Banouni, H, Moudden, A, et al.. Ultrasound monitoring of water content in ultra high temperature milk. Instrum Mes Métrol 2023;22:177–83. https://doi.org/10.18280/i2m.220406.Search in Google Scholar

28. Mesbah, H, Lotfi, H, Banouni, H, Tafkirte, M, Faiz, B, Ettahiri, M. An ultrasonic device for investigating the impacts of water content on cement durability by measuring dispersion curves. Acoust Phys 2023;69:582–7. https://doi.org/10.1134/s1063771022600413.Search in Google Scholar

29. Tafkirte, M, Hamine, A, Mesbah, H, Aboudaoud, I, Décultot, D. A novel approach for modeling of the ultrasonic signal backscattered in immersed multilayer structures at normal incidence: time, frequency, and velocity dispersion representation. Mech Syst Signal Process 2023;198:110415. https://doi.org/10.1016/j.ymssp.2023.110415.Search in Google Scholar

30. Hamine, A, Faiz, B, Moudden, A, Menou, A, Benallou, A, Izbaim, D, et al.. Ultrasonic attenuation measurement method for characterization of clay particles mass fraction in dilute suspension. High Temp Mater Process 2009;28:369–77. https://doi.org/10.1515/htmp.2009.28.6.369.Search in Google Scholar

31. Corach, J, Sorichetti, PA, Romano, SD. Electrical and ultrasonic properties of vegetable oils and biodiesel. Fuel 2015;139:466–71. https://doi.org/10.1016/j.fuel.2014.09.026.Search in Google Scholar

32. Ghodhbani, N, Marechal, P, Duflo, H. Ultrasonic broadband characterization of a viscous liquid: methods and perturbation factors. Ultrasonics 2015;56:308–17. https://doi.org/10.1016/j.ultras.2014.08.013.Search in Google Scholar PubMed

33. Davis, JP, Dean, LO, Faircloth, WH, Sanders, TH. Physical and chemical characterizations of normal and high-oleic oils from nine commercial cultivars of peanut. J Am Oil Chem Soc 2008;85:235–43. https://doi.org/10.1007/s11746-007-1190-x.Search in Google Scholar

34. Malaoui, A. Mesures et modélisation de la signature électronique de l’huile d’Argan par la technique acoustique non destructive/[Measurement and modeling of electronic signature of argan oil by non-destructive acoustic technique]. Int J Innovat Appl Stud 2016;16:902.Search in Google Scholar

35. George, T, Rufus, E, Alex, ZC. Artificial neural network based ultrasonic sensor system for detection of adulteration in edible oil. J Eng Sci Technol 2017;12:1568–79.Search in Google Scholar

Received: 2024-03-15
Accepted: 2024-08-06
Published Online: 2024-08-21

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2024-0061/html?lang=en
Scroll to top button