Home Physicochemical and bioactive properties of avocado (Persea americana Mill. cv. Lorena)
Article
Licensed
Unlicensed Requires Authentication

Physicochemical and bioactive properties of avocado (Persea americana Mill. cv. Lorena)

  • Adriana Marcela Bonilla-Loaiza ORCID logo , Henry Alexander Váquiro-Herrera ORCID logo and José Fernando Solanilla-Duque ORCID logo EMAIL logo
Published/Copyright: March 25, 2022

Abstract

Chemical compounds are of great importance in the food, cosmetic and pharmaceutical industries. Nutritional components, the presence of secondary metabolites with antioxidant and antimicrobial activity, and physicochemical properties of pulp, seed and peel of Lorena avocado cultivars were studied. Antioxidant activity was evaluated by ABTS, DPPH and lipid peroxidation in pulp, seed and peel. 26 extracts was evaluated. The results confirmed that the fruit parts stabilize free radicals and inhibit lipid oxidation processes, with the highest values in seed and peel, due to their content of flavonoids, o-diphenols and phenols. The results of phytochemical screening, antioxidant capacity and antimicrobial activity, showed significant bioprospective advantage for the presence of flavonoids, condensed tannins and total phenols in the seed, peel and pulp of Lorena avocado cultivars. Avocado fruits are rich in bioactive compounds that can be used in functional food applications.


Corresponding author: José Fernando Solanilla-Duque, Departamento de Agroindustria, Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, Colombia, E-mail:
Adriana Marcela Bonilla-Loaiza and José Fernando Solanilla-Duque have contributed equally to this work.

Acknowledgment

The authors thank the Research Fund of the University of Tolima for funding the 400112 projects and technical support from the University of Cauca.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: University of Tolima for funding the 400112 projects. The authors have no conflicts of interest to declare that are relevant to the content of this article.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

1. Guerrero Álvarez, GE, López Gutiérrez, AM, Valencia, KÁ, Mossos, PS, Rozo, DLS, Hurtado, NC. Genetic and chemical characterization of avocado commercial cultivars avocado of Risaralda Colombia. Rev Bras Frutic 2020;42:1–14. https://doi.org/10.1590/0100-29452020593.Search in Google Scholar

2. Cañas-Gutiérrez, GP, Galindo-López, LF, Arango-Isaza, R, Saldamando-Benjumea, CI. Diversidad genética de cultivares de aguacate (Persea americana) en Antioquia, Colombia. Agron Mesoam 2015;26:129–43, https://doi.org/10.15517/am.v26i1.16936.Search in Google Scholar

3. United Nations. World Economic Situation and Prospects. New York, USA: United Nations; 2019. https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2019_BOOK-web.pdf.Search in Google Scholar

4. Tafur Reyes, R, Toro Mesa, JC, Perfetti, JJ, Ruiz, D, Morales, JR. Plan Frutícola Nacional (PFN). Bogotá, Colombia; 2006. [https://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_14_FINALPFNCOMPLETO.pdf] [Accessed 24 Feb 2021].Search in Google Scholar

5. Ministerio de agricultura y desarrollo rural (MADR), Fondo nacional de fomento hortofrutícola (FNFH), Asociación hortofrutícola de Colombia (ASOHOFRUCOL), Sociedad de agricultores y ganaderos del valle del cauca (SAG). Plan hortícola Nacional (PHN). Bogotá; 2019. [https://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_27_PHN.pdf] [Accessed 24 Feb 2021].Search in Google Scholar

6. DANE. Boletín Técnico: Encuesta Nacional Agropecuaria. Bogotá; 2019. https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019.pdf [Accessed 24 Feb 2021].Search in Google Scholar

7. Araújo, RG, Rodriguez-Jasso, RM, Ruiz, HA, Pintado, MME, Aguilar, CN. Avocado by-products: nutritional and functional properties. Trends Food Sci Technol 2018;80:51–60, https://doi.org/10.1016/j.tifs.2018.07.027.Search in Google Scholar

8. Araújo, RG, Rodriguez-Jasso, RM, Ruiz, HA, Govea-Salas, M, Pintado, ME, Aguilar, CN. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind Crop Prod 2020;154:112623, https://doi.org/10.1016/j.indcrop.2020.112623.Search in Google Scholar

9. Duarte, PF, Chaves, MA, Borges, CD, Mendonça, CRB. Avocado: characteristics, health benefits and uses. Ciência Rural 2016;46:747–54, https://doi.org/10.1590/0103-8478cr20141516.Search in Google Scholar

10. Flores, M, Saravia, C, Vergara, C, Avila, F, Valdés, H, Ortiz-Viedma, J. Avocado oil: characteristics, properties, and applications. Molecules 2019;24:2172, https://doi.org/10.3390/molecules24112172.Search in Google Scholar

11. Dorantes-Alvarez, L, Ortiz-Moreno, A, García-Ochoa, F. Avocado. In: Siddiq, M, Ahmed, J, Lobo, MG, et al.., editors. Tropical and subtropical fruits: Postharvest physiology, processing and packaging. Oxford, UK: Wiley-Blackwell. 435–54 pp.10.1002/9781118324097.ch23Search in Google Scholar

12. Costagli, G, Betti, M. Avocado oil extraction processes: method for cold-pressed high-quality edible oil production versus traditional production. J Agric Eng 2015;46:115, https://doi.org/10.4081/jae.2015.467.Search in Google Scholar

13. Dreher, ML, Davenport, AJ. Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr 2013;53:738–50, https://doi.org/10.1080/10408398.2011.556759.Search in Google Scholar

14. Páramos, PRS, Granjo, JFO, Corazza, ML, Matos, HA. Extraction of high value products from avocado waste biomass. J Supercrit Fluids 2020;165:104988, https://doi.org/10.1016/j.supflu.2020.104988.Search in Google Scholar

15. Amado, DAV, Helmann, GAB, Detoni, AM, de Carvalho, SLC, de Aguiar, CM, Martin, CA, et al.. Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Braz J Food Technol 2019;22:1–11. https://doi.org/10.1590/1981-6723.04418.Search in Google Scholar

16. Jimenez, P, Garcia, P, Quitral, V, Vasquez, K, Parra-Ruiz, C, Reyes-Farias, M, et al.. Pulp, leaf, peel and seed of avocado fruit: a review of bioactive compounds and healthy benefits. Food Rev Int 2020;6:619–55. https://doi.org/10.1080/87559129.2020.1717520.Search in Google Scholar

17. Wang, W, Bostic, TR, Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem 2010;122:1193–8, https://doi.org/10.1016/j.foodchem.2010.03.114.Search in Google Scholar

18. Cerda-Opazo, P, Gotteland, M, Oyarzun-Ampuero, FA, Garcia, L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: a novel biological active ingredient to enrich food. Food Hydrocolloids 2021;111:106370, https://doi.org/10.1016/j.foodhyd.2020.106370.Search in Google Scholar

19. Rodríguez-Carpena, J-G, Morcuende, D, Andrade, M-J, Kylli, P, Estévez, M. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem 2011;59:5625–35, https://doi.org/10.1021/jf1048832.Search in Google Scholar

20. Barbosa-Martín, E, Chel-Guerrero, L, González-Mondragón, E, Betancur-Ancona, D. Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food Bioprod Process 2016;100:457–63, https://doi.org/10.1016/j.fbp.2016.09.006.Search in Google Scholar

21. Tremocoldi, MA, Rosalen, PL, Franchin, M, Massarioli, AP, Denny, C, Daiuto, ÉR, et al.. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One 2018;13:e0192577, https://doi.org/10.1371/journal.pone.0192577.Search in Google Scholar

22. Calderón-Oliver, M, Escalona-Buendía, HB, Medina-Campos, ON, Pedraza-Chaverri, J, Pedroza-Islas, R, Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT - Food Sci Technol 2016;65:46–52, https://doi.org/10.1016/j.lwt.2015.07.048.Search in Google Scholar

23. Salazar-López, NJ, Salmerón-Ruiz, ML, Domínguez-Avila, JA, Villegas-Ochoa, MA, Ayala-Zavala, JF, González-Aguilar, GA. Phenolic compounds from ‘Hass’ avocado peel are retained in the indigestible fraction after an in vitro gastrointestinal digestion. J Food Meas Charact 2021;15:1982–90, https://doi.org/10.1007/s11694-020-00794-6.Search in Google Scholar

24. Fertah, M, Belfkira, A, E montassir, D, Taourirte, M, Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 2017;10:S3707–14, https://doi.org/10.1016/j.arabjc.2014.05.003.Search in Google Scholar

25. Saavedra, J, Córdova, A, Navarro, R, Díaz-Calderón, P, Fuentealba, C, Astudillo-Castro, C, et al.. Industrial avocado waste: functional compounds preservation by convective drying process. J Food Eng 2017;198:81–90, https://doi.org/10.1016/j.jfoodeng.2016.11.018.Search in Google Scholar

26. Abubakar, ANF, Achmadi, SS, Suparto, IH. Triterpenoid of avocado (Persea americana) seed and its cytotoxic activity toward breast MCF-7 and liver HepG2 cancer cells. Asian Pac J Trop Biomed 2017;7:397–400, https://doi.org/10.1016/j.apjtb.2017.01.010.Search in Google Scholar

27. D’Ambrosio, SM, Han, C, Pan, L, Douglas Kinghorn, A, Ding, H. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun 2011;409:465–9.10.1016/j.bbrc.2011.05.027Search in Google Scholar PubMed PubMed Central

28. Boadi, NO, Saah, SA, Mensah, JK, Badu, M, Addai-Arhinand, S, Mensah, MB. Phytoconstituents, antimicrobial and antioxidant properties of the leaves of Persea americana Mill cultivated in Ghana. J Med Plants Res 2015;9:933–9. https://doi.org/10.5897/JMPR2015.5902.Search in Google Scholar

29. Conte, A, Speranza, B, Sinigaglia, M, Del Nobile, MA. Effect of lemon extract on foodborne microorganisms. J Food Protect 2007;70:1896–900, https://doi.org/10.4315/0362-028x-70.8.1896.Search in Google Scholar

30. Colombo, R, Papetti, A. Avocado (Persea americana Mill.) by‐products and their impact: from bioactive compounds to biomass energy and sorbent material for removing contaminants. A review. Int J Food Sci Technol 2019;54:943–51, https://doi.org/10.1111/ijfs.14143.Search in Google Scholar

31. Chemat, F, Vian, MA, Cravotto, G. Green extraction of natural products: concept and principles. Int J Mol Sci 2012;13:8615–27, https://doi.org/10.3390/ijms13078615.Search in Google Scholar

32. Alam Sobuj, MK, Islam, MA, Haque, MA, Islam, MM, Alam, MJ, Rafiquzzaman, SM. Evaluation of bioactive chemical composition, phenolic, and antioxidant profiling of different crude extracts of Sargassum coriifolium and Hypnea pannosa seaweeds. J Food Meas Charact 2021;15:1653–65, https://doi.org/10.1007/s11694-020-00758-w.Search in Google Scholar

33. Yang, S, Hallett, I, Rebstock, R, Oh, HE, Kam, R, Woolf, AB, et al.. Cellular changes in “Hass” avocado mesocarp during cold-pressed oil extraction. J Am Oil Chem Soc 2018;95:229–38, https://doi.org/10.1002/aocs.12019.Search in Google Scholar

34. Sánchez-Albarrán, F, Salgado-Garciglia, R, Molina-Torres, J, López-Gómez, R. Oleosome oil storage in the mesocarp of two avocado varieties. J Oleo Sci 2019;68:87–94, https://doi.org/10.5650/jos.ess18176.Search in Google Scholar

35. Sivanathan, S, Adikaram, NKB. Biological activity of four antifungal compounds in immature avocado. J Phytopathol 1989;125:97–109, https://doi.org/10.1111/j.1439-0434.1989.tb00644.x.Search in Google Scholar

36. Domergue, F, Helms, GL, Prusky, D, Browse, J. Antifungal compounds from idioblast cells isolated from avocado fruits. Phytochemistry 2000;54:183–9, https://doi.org/10.1016/s0031-9422(00)00055-8.Search in Google Scholar

37. Rodríguez-López, CE, Hernández-Brenes, C, Treviño, V, Díaz de la Garza, RI. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed. BMC Plant Biol 2017;17:159, https://doi.org/10.1186/s12870-017-1103-6.Search in Google Scholar

38. Trujillo-Mayol, I, Madalena, C, Sobral, M, Viegas, O, Alarcón-Enos, J, Pinho, O, et al.. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: a clean label ingredient. Food Res Int 2021;147:110434, https://doi.org/10.1016/j.foodres.2021.110434.Search in Google Scholar

39. Barbieri, R, Coppo, E, Marchese, A, Daglia, M, Sobarzo-Sánchez, E, Nabavi, SF, et al.. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 2017;196:44–68, https://doi.org/10.1016/j.micres.2016.12.003.Search in Google Scholar

40. Raymond Chia, TW, Dykes, GA. Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharm Biol 2010;48:753–6, https://doi.org/10.3109/13880200903273922.Search in Google Scholar

41. Madhupani, YDS, Adikaram, NKB. Delayed incidence of stem-end rot and enhanced defences in Aureobasidium pullulans-treated avocado (Persea americana Mill.) fruit. J Plant Dis Prot 2017;124:227–34, https://doi.org/10.1007/s41348-017-0086-8.Search in Google Scholar

42. Perkins, ML, Joyce, DC, Coates, LM. Possible contribution of impact injury at harvest to anthracnose expression in ripening avocado: a review. Sci Hortic 2019;246:785–90, https://doi.org/10.1016/j.scienta.2018.11.012.Search in Google Scholar

43. Márquez-Ramírez, CA, Hernández de la Paz, JL, Ortiz-Avila, O, Raya-Farias, A, González-Hernández, JC, Rodríguez-Orozco, AR, et al.. Comparative effects of avocado oil and losartan on blood pressure, renal vascular function, and mitochondrial oxidative stress in hypertensive rats. Nutrition 2018;54:60–7, https://doi.org/10.1016/j.nut.2018.02.024.Search in Google Scholar

44. Association of Official Agricultural Chemists (AOAC). Official methods of analysis of AOAC International, 19th ed. Gaithersburg Md: AOAC International; 2016.Search in Google Scholar

45. Çelik, SE, Özyürek, M, Güçlü, K, Apak, R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010;81:1300–9, https://doi.org/10.1016/j.talanta.2010.02.025.Search in Google Scholar

46. Murillo, E, Aristizábal, JG, Murillo, W, Ibarz Ribas, A, Méndez, JJ, Solanilla, JF. Preliminary characterization of the enzyme polyphenol oxidase and rheological behavior from Averrhoa carambola juice. Rev Fac Nac Agron Medellin 2017;70:8099–113, https://doi.org/10.15446/rfna.v70n1.61769.Search in Google Scholar

47. Shaghaghi, M, Manzoori, JL, Jouyban, A. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin–Ciocalteu spectrophotometric method. Food Chem 2008;108:695–701, https://doi.org/10.1016/j.foodchem.2007.11.008.Search in Google Scholar

48. Karimkhani, MM, Salarbashi, D, Sanjari Sefidy, S, Mohammadzadeh, A. Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex C.K. Schneider. J Food Meas Charact 2019;13:357–67, https://doi.org/10.1007/s11694-018-9951-9.Search in Google Scholar

49. Bendini, A, Cerretani, L, Carrasco-Pancorbo, A, Gómez-Caravaca, A, Segura-Carretero, A, Fernández-Gutiérrez, A, et al.. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade alessandra. Molecules 2007;12:1679–719, https://doi.org/10.3390/12081679.Search in Google Scholar

50. Osorio, MN, Moyano, DF, Murillo, W, Murillo, E, Ibarz, A, Solanilla, JF. Functional and rheological properties of Piñuela (Bromelia karatas) in two ripening stages. Int J Food Eng 2017;13:20160154.10.1515/ijfe-2016-0154Search in Google Scholar

51. Sánchez-Riaño, AM, Solanilla-Duque, JF, Méndez-Arteaga, JJ, Váquiro-Herrera, HA. Bioactive potential of Colombian feijoa in physiological ripening stage. J Saudi Soc Agric Sci 2020;19:299–305, https://doi.org/10.1016/j.jssas.2019.05.002.Search in Google Scholar

52. Rufinodo, MSM, Alves, RE, de Brito, ES, Pérez-Jiménez, J, Saura-Calixto, F, Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 2010;121:996–1002, https://doi.org/10.1016/j.foodchem.2010.01.037.Search in Google Scholar

53. Iqbal, S, Bhanger, MI, Anwar, F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem 2005;93:265–72, https://doi.org/10.1016/j.foodchem.2004.09.024.Search in Google Scholar

54. Solanilla Duque, JF, Lombo, O, Murillo Perea, E, Méndez Arteaga, JJ. Assessment of antioxidant potential of Mollinedia racemosa (romadizo). Rev Cubana Plantas Med 2011;16:151–63.Search in Google Scholar

55. Lu, L-C, Chen, Y-W, Chou, C-C. Antibacterial activity of propolis against Staphylococcus aureus. Int J Food Microbiol 2005;102:213–20, https://doi.org/10.1016/j.ijfoodmicro.2004.12.017.Search in Google Scholar

56. Quintero-Cerón, JP, Váquiro, HA, Solanilla, JF, Murillo, E, Méndez, JJ. In vitro fungistatic activity of ethanolic extract of propolis against postharvest phytopathogenic fungi: preliminary assessment –actividad fungistática in vitro del extracto etanólico del propóleo en el control de hongos fitopatógenos en poscosecha: estu. Acta Hortic 2014;1:157–62.10.17660/ActaHortic.2014.1016.22Search in Google Scholar

57. Jurado-Gámez, H, Calpa-Yama, F, Chaspuengal-Tulcán, A. Determinación in vitro de la acción probiótica de Lactobacillus plantarum SOBRE Yersinia pseudotuberculosis aislada de Cavia porcellus. Rev la Fac Med Vet y Zootec 2014;61:241–57, https://doi.org/10.15446/rfmvz.v61n3.46872.Search in Google Scholar

58. Segovia, F, Hidalgo, G, Villasante, J, Ramis, X, Almajano, M. Avocado seed: a comparative study of antioxidant content and capacity in protecting oil models from oxidation. Molecules 2018;23:2421, https://doi.org/10.3390/molecules23102421.Search in Google Scholar

59. Galvão, Mde S, Narain, N, Nigam, N. Influence of different cultivars on oil quality and chemical characteristics of avocado fruit. Food Sci Technol 2014;34:539–46, https://doi.org/10.1590/1678-457x.6388.Search in Google Scholar

60. Oliveira, MC, Pio, R, Ramos, JD, Lima, LCO, Pasqual, M, Santos, VA. Fenologia e características físico-químicas de frutos de abacateiros visando à extração de óleo. Ciência Rural 2013;43:411–8, https://doi.org/10.1590/s0103-84782013000300006.Search in Google Scholar

61. Maitera, ON, Osemeahon, SA, Barnabas, HL. Proximate and elemental analysis of avocado fruit obtained from Taraba state, Nigeria. Indian J Sci Technol 2014;2:67–73.Search in Google Scholar

62. de Oliveira, AP, de Souza Franco, E, Rodrigues Barreto, R, Cordeiro, DP, de Melo, RG, de Aquino, CMF, et al.. Effect of semisolid formulation of Persea americana Mill (avocado) oil on wound healing in rats. Evidence-Based Complement Altern Med 2013;2013:1–8, https://doi.org/10.1155/2013/472382.Search in Google Scholar

63. Trujillo-Mayol, I, Viegas, O, Sobral, MMC, Casas-Forero, N, Fiallos, N, Pastene-Navarrete, E, et al.. In vitro gastric bioaccessibility of avocado peel extract in beef and soy-based burgers and its impact on Helicobacter pylori risk factors. Food Chem 2022;373:131505, https://doi.org/10.1016/j.foodchem.2021.131505.Search in Google Scholar

64. Trujillo-Mayol, I, Casas-Forero, N, Pastene-Navarrete, E, Lima Silva, F, Alarcón-Enos, J. Fractionation and hydrolyzation of avocado peel extract: improvement of antibacterial activity. Antibiotics 2020;10:23, https://doi.org/10.3390/antibiotics10010023.Search in Google Scholar

65. Aletan, U. Proximate and physicochemical analysis of the fruit and oil of avocado pear. Commun Phys Sci 2018;3:18–26.Search in Google Scholar

66. Egbuonu, AC, Opara, IC, Onyeabo, C, Uchenna, NO. Proximate, functional, antinutrient and antimicrobial properties of avocado pear (Persea americana) seeds. J Nutr Heal Food Eng 2018;8:260, https://doi.org/10.15406/jnhfe.2018.08.00260.Search in Google Scholar

67. Ayala-Zavala, JF, Vega-Vega, V, Rosas-Domínguez, C, Palafox-Carlos, H, Villa-Rodriguez, JA, Siddiqui, MW, et al.. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res Int 2011;44:1866–74, https://doi.org/10.1016/j.foodres.2011.02.021.Search in Google Scholar

68. Leão, DP, Franca, AS, Oliveira, LS, Bastos, R, Coimbra, MA. Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chem 2017;225:146–53, https://doi.org/10.1016/j.foodchem.2017.01.027.Search in Google Scholar

69. Dainton, AN, de Godoy, MRC. Avocado meal: a novel dietary fiber source in feline diets. J Anim Sci 2017;95:110, https://doi.org/10.2527/asasann.2017.222.Search in Google Scholar

70. Mohammad, NA, Anwar, F, Mehmood, T, Hamid, AA, Muhammad, K, Saari, N. Phenolic compounds, tocochromanols profile and antioxidant properties of winter melon [Benincasa hispida (Thunb.) Cogn.] seed oils. J Food Meas Charact 2019;13:940–8, https://doi.org/10.1007/s11694-018-0008-x.Search in Google Scholar

71. Rodríguez-Campos, SV, Hernández-Carranza, P, Ávila-Sosa, R, Ruiz-López, II, Ochoa-Velasco, CE. Effect of natural extracts addition on antioxidant, color and sensory properties of avocado (Persea americana cv. criollo sp.) puree. J Food Meas Charact 2020;14:2623–34, https://doi.org/10.1007/s11694-020-00509-x.Search in Google Scholar

72. Chikwendu, JN, Udenta, EA, Nwakaeme, TC. Avocado pear pulp (Persea americana)-supplemented cake improved some serum lipid profile and plasma protein in rats. J Med Food 2020;24:1–6. https://doi.org/10.1089/jmf.2020.0017.Search in Google Scholar

73. Ozdemir, F, Topuz, A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem 2004;86:79–83, https://doi.org/10.1016/j.foodchem.2003.08.012.Search in Google Scholar

74. Figueroa, JG, Borrás-Linares, I, Pino-García, RD, Curiel, JA, Lozano-Sánchez, J, Segura-Carretero, A. Functional ingredient from avocado peel: microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem 2021;352:129300, https://doi.org/10.1016/j.foodchem.2021.129300.Search in Google Scholar

75. Vega, NA, Salazar, SA, Bautista, LT, Muñoz, GE. Evaluación del efecto inhibidor de la enzima polifenol oxidasa en una salsa de aguacate (Persea americana). Entre Cienc e Ing 2020;14:58–62, https://doi.org/10.31908/19098367.1775.Search in Google Scholar

76. Torres-Fernández del Campo, J, Olvera-Vargas, M, Figueroa-Rangel, BL, Cuevas-Guzmán, R, Iñiguez-Dávalos, LI. Patterns of spatial diversity and structure of mangrove vegetation in pacific West-Central Mexico. Wetlands 2018;38:919–31, https://doi.org/10.1007/s13157-018-1041-6.Search in Google Scholar

77. Soledad, C-PT, Paola, H-C, Carlos Enrique, O-V, Israel, R-LI, GuadalupeVirginia, N-M, Raúl, Á-S. Avocado seeds (Persea americana cv. Criollo sp.): lipophilic compounds profile and biological activities. Saudi J Biol Sci 2021;28:3384–90, https://doi.org/10.1016/j.sjbs.2021.02.087.Search in Google Scholar

78. Salinas-Salazar, C, Hernández-Brenes, C, Rodríguez-Sánchez, DG, Castillo, EC, Navarro-Silva, JM, Pacheco, A. Inhibitory activity of avocado seed fatty acid derivatives (acetogenins) against Listeria monocytogenes. J Food Sci 2017;82:134–44, https://doi.org/10.1111/1750-3841.13553.Search in Google Scholar

79. Arlene, AA, Prima, KA, Utama, L, Anggraini, SA. The preliminary study of the dye extraction from the avocado seed using ultrasonic assisted extraction. Procedia Chem 2015;16:334–40, https://doi.org/10.1016/j.proche.2015.12.061.Search in Google Scholar

80. Arackal, JJ, Parameshwari, S. Identification of antioxidant activity and shelf life assay of avocado fruit pulp incorporated chapattis. Mater Today Proc 2021;45:2589–94, https://doi.org/10.1016/j.matpr.2020.11.337.Search in Google Scholar

81. Javier David Vega, A, Hector, R-E, Juan Jose, L-G, Maria L, L-G, Paola, H-C, Raúl, Á-S, et al.. Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech J Food Sci 2017;35:456–65, https://doi.org/10.17221/316/2016-cjfs.Search in Google Scholar

82. Meneses, NGT, Martins, S, Teixeira, JA, Mussatto, SI. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separ Purif Technol 2013;108:152–8, https://doi.org/10.1016/j.seppur.2013.02.015.Search in Google Scholar

83. Aktar, T, Adal, E. Determining the arrhenius kinetics of avocado oil: oxidative stability under rancimat test conditions. Foods 2019;8:236, https://doi.org/10.3390/foods8070236.Search in Google Scholar

84. Zhang, L, Li, S, Dong, Y, Zhi, H, Zong, W. Tea polyphenols incorporated into alginate-based edible coating for quality maintenance of Chinese winter jujube under ambient temperature. LWT - Food Sci Technol 2016;70:155–61, https://doi.org/10.1016/j.lwt.2016.02.046.Search in Google Scholar

85. Kosińska, A, Karamać, M, Estrella, I, Hernández, T, Bartolomé, B, Dykes, GA. Phenolic compound profiles and antioxidant capacity of Persea americana mill. Peels and seeds of two varieties. J Agric Food Chem 2012;60:4613–9, https://doi.org/10.1021/jf300090p.Search in Google Scholar

86. Chai, W-M, Wei, M-K, Wang, R, Deng, R-G, Zou, Z-R, Peng, Y-Y. Avocado proanthocyanidins as a source of tyrosinase inhibitors: structure characterization, inhibitory activity, and mechanism. J Agric Food Chem 2015;63:7381–7, https://doi.org/10.1021/acs.jafc.5b03099.Search in Google Scholar

87. Adikaram, NKB, Ewing, DF, Karunaratne, AM, Wijeratne, EMK. Antifungal compounds from immature avocado fruit peel. Phytochemistry 1992;31:93–6, https://doi.org/10.1016/0031-9422(91)83013-b.Search in Google Scholar

88. Figueroa, JG, Borrás-Linares, I, Lozano-Sánchez, J, Segura-Carretero, A. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res Int 2018;105:752–63, https://doi.org/10.1016/j.foodres.2017.11.082.Search in Google Scholar

89. Soong, YY, Barlow, PJ. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 2004;88:411–7, https://doi.org/10.1016/j.foodchem.2004.02.003.Search in Google Scholar

90. Chong, MFF, Macdonald, R, Lovegrove, JA. Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 2010;104:S28–S39, https://doi.org/10.1017/s0007114510003922.Search in Google Scholar

91. Wu, X, Gu, L, Holden, J, Haytowitz, DB, Gebhardt, SE, Beecher, G, et al.. Development of a database for total antioxidant capacity in foods: a preliminary study. J Food Compos Anal 2004;17:407–22, https://doi.org/10.1016/j.jfca.2004.03.001.Search in Google Scholar

92. Çakmak, M, Bakar, B, Özer, D, Geckil, H, Karatas, F, Saydam, S. Investigation of some biochemical parameters of wild and cultured Myrtus communis L. fruits subjected to different conservation methods. J Food Meas Charact 2021;15:983–93, https://doi.org/10.1007/s11694-020-00692-x.Search in Google Scholar

93. Tome, AC, Mársico, ET, da Silva, FA, Kato, L, do Nascimento, TP, Monteiro, MLG. Achachairú (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile. J Food Meas Charact 2019;13:213–21, https://doi.org/10.1007/s11694-018-9934-x.Search in Google Scholar

94. Udomkun, P, Argyropoulos, D, Nagle, M, Mahayothee, B, Oladeji, AE, Müller, J. Changes in microstructure and functional properties of papaya as affected by osmotic pre-treatment combined with freeze-drying. J Food Meas Charact 2018;12:1028–37, https://doi.org/10.1007/s11694-018-9718-3.Search in Google Scholar

95. Skenderidis, P, Leontopoulos, S, Petrotos, K, Giavasis, I. Vacuum microwave-assisted aqueous extraction of polyphenolic compounds from avocado (Persea americana) solid waste. Sustainability 2021;13:2166, https://doi.org/10.3390/su13042166.Search in Google Scholar

96. Daglia, M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol 2012;23:174–81, https://doi.org/10.1016/j.copbio.2011.08.007.Search in Google Scholar

97. Atukuri, J, Fawole, OA, Opara, UL. Effect of exogenous fludioxonil postharvest treatment on physiological response, physico-chemical, textural, phytochemical and sensory characteristics of pomegranate fruit. J Food Meas Charact 2017;11:1081–93, https://doi.org/10.1007/s11694-017-9485-6.Search in Google Scholar

Received: 2021-08-10
Revised: 2022-03-06
Accepted: 2022-03-10
Published Online: 2022-03-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2021-0237/html
Scroll to top button