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Abstract: Daqu, a Chinese liquor fermentation starter, con-
tains all kinds of microorganisms and enzymes for Chinese
liquor fermentation. The moisture content of Daqu signifi-
cantly influence on the reproduction of microorganisms in
Daqu. This work presents for the first time that determination
of moisture content of Daqu with hyperspectral imaging. The
characteristic spectrum of water is extracted based on
comparative experiments with varying moisture content. The
molds based on the full bands and feature bands were
established by the support vector regression (SVR) method,
which is used to predict moisture content of Daqu during
fermentation process. The performance of the model based on
the feature bands (R*> = 0.9870, root mean square error
(RMSE) = 0.0091) is comparable to the full bands and the
dimensions of the spectral information were significantly
reduced. Thiswork presents anovel, rapid and nondestructive
approach for detecting the moisture content in Daqu and lays
a foundation for the application of hyperspectral imaging.
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1 Introduction

Moisture content in food processing is the basis for the se-
lection of food processing process and the determination of
technological parameters [1]. It is also an important index to
control the final food quality [2-4]. Specially, the moisture
content of Daqu during fermentation process is of key
importance [5], the reproductive rate of microorganisms will
change depending on the moisture content [6]. As moisture
content generally varies throughout the production process,
the traditional detection method (the gravimetric oven
method) is time-consuming, and cumbersome. Several
detection methods reported in literature such as nuclear
magnetic resonance, microwave, capacitance, near-infrared
spectroscopy, and hyperspectral imaging (HSI) have been
used for rapid detection of moisture content in food [7, 8].
Among them, HSI has attracted much attention from re-
searchers due to its fast measurements, high accuracy, and
non-destructive and non-toxic properties. HSI is an
emerging platform that combines traditional spectral and
imaging techniques to obtain spectral and spatial informa-
tion from samples [9]. Hyperspectral technology is widely
used in geology and minerals, atmospheric sciences,
oceans, agriculture, industrial production, and other fields
[10-12]. Due to HSI information with the large spectral in-
formation, large frequency band, and high redundancy, the
information processing of HSI is difficult. Dimensional
reduction has become an obstacle in HSI applications and
information processing [13]. To solve the problems of pro-
cessing high-dimensional data, researchers developed
feature extraction methods used to reduce the dimension-
ality [14]. Wei [7] selected 12 and 11 feature bands for the front
side and back side, respectively of tea using the random frog
(RF) and successive projection algorithm (SPA) algorithm;
Sun [15] used four feature selection algorithms to extract the
most effective wavelengths of the tea. Zhou [16] used the
partial least squares regression (PLSR) algorithm to extract
characteristic wavelengths of lettuce leaves. However, the
water feature bands extracted by different data processing
methods are inconsistent [16, 17]. Identifying find the char-
acteristic bands of water is of great significance for the
application of HSI [18]. In this work, according to the inter-
action mechanisms of electromagnetic wave and water
molecular vibrations [19], experiments with different
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moisture contents were designed to define characteristic
wavelengths, the continuum removal (CR) algorithm and
the first order derivative spectroscopy (FODS) used to handle
the raw spectra. The three characteristic wavelengths and
three waveform variation characteristic wavelengths of
water were extracted. The support vector regression (SVR)
was adopted to establish the prediction models based on full
bands and feature bands to predict the moisture content of
Daqu during the fermentation process. A model based on
feature bands compared to full band where R? values of
0.9826 and 0.9925 as well as root mean square errors (RMSE)
of 1.14 and 0.65% were attained for calibration and predic-
tion, respectively. The current study presents a novel effi-
cient and rapid method to select feature bands and lays a
foundation for the application of HSI.

2 Materials and methods

The main flowchart of the research process used in the current study is
illustrated in Figure 1, which includes the selection of feature bands by
experiment and application to predict the moisture in Daqu [20].

2.1 Selection of characteristics spectral of water

To investigate the spectral differences with and without water, quartz
sand was used as the experimental control. Comparison of the spectral
reflectance curves of quartz sand powder with and without water, and
the effect of moisture on the spectral information was investigated.
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Table 1: Hyperspectral experiments of the quartz sand/water
mixture.

Groups Experimental name Collection instructions

1 Quartz sand powder In a circular petri dish, add 55 g white
quartz sand powder
2 Quartz sand/water In group 1, 12 ml of water was added
mixture to the petri dish

Table 2: Hyperspectral experiments of moisture content in dough.

Groups Experimental name Collection time
1 Dough 1 18:15
2 Dough 2 18:30
3 Dough 3 18:45
4 Dough 4 19:00

The hyperspectral experiment of the quartz sand/water mixture is
shown in Table 1.

The dough is used to study the change of the hyperspectral curves
with different water content. In brief, a certain amount of flour and
water are mixed evenly and kneaded it into a dough. Continuous
kneading was performed to reduce moisture in the dough, and hyper-
spectral data was collected every 15 min. The scheme of the hyper-
spectral experiment of moisture content in dough is shown in Table 2.

2.2 Daqu sample preparation

Daqu is prepared by solid-state fermentation from wheat, barley and/
or peas with ingredient formulation, grinding and mixing, shaping,
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Figure 1: Schematic diagram of hyperspectral image analysis.
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incubation, and matu-ration [21]. Daqu Samples were collected from a
winery in Yibin, Sichuan province, from April 17 to May 15, 2018. And
160 samples were collected in total.

2.3 Hyperspectral image acquisition

A pushbroom HSI system was used for acquisition of the hyperspectral
image of each sample, with 224 spectral bands in the range of 900-
1700 nm with a resolution of 3.5 nm [22]. The main components of this
system include an electronically controlled conveyor belt (Finland),
two 150 W halogen lamps (Finland) as the illumination unit, a bracket
used to support camera and light source, a hyperspectral camera with
lens (FX17, Specim, Finland), and a system control software (Lumo-
scanner, Finland) was used for setting the optimal parameters (e.g.,
exposure time, conveyor speed) for imaging [23].

During hyperspectral image acquisition, the samples in the petri
dish were placed flat on a black baseplate for scanning. The movement
speed of the conveyor belt was set to be 16.57 mm/s in order to match
the scanning of the camera, the exposure time was adjusted to 4.02 ms,
the vertical distance between samples and lens was 29 cm, and the
object distance was set to 15 cm to obtain clear hyperspectral images.

2.4 The measurement of moisture content in Daqu

Drying under 101-105 °C temperature, the moisture content of Daqu
samples were calculated by weighing. The equipment includes an
electronic balance with a precision of 0.1 mg which was used to
determine the weight, and an electric oven with a precision for plus or
minus 2 °C was utilized to accelerate moisture evaporation, and a
weighing flask with size of 50 x 30 mm, and a dryer with desiccant [24].
Experimental procedures are described as follows: step 1: drying
the clean weighing bottle under 101-105 °C in the electric heating oven
for 1 h while tilting the bottle cap on the bottle edge, covering the cap
and placing the bottle in the dryer for 0.5 h, weighing the samples
lastly, after then repeat the above procedures until the weight differ-
ence should not be more than 0.002 g, finally the result is the bottle’s
constant weight. Step 2: 4-5 g samples of Daqu are obtained in bottle
with a precision of 0.0001 g. Drying under 101-105 °C in the electric
heating oven for 3 h while opening the bottle cap, after the drying is
completed, covering the cap and putting the bottle in the dryer for
0.5 h, after then repeat the above procedures until the weight is no
longer changed. The moisture content of the Daqu was calculated by
the following formula [25],
=M =M, 100 )
m —m
In this formula, X is the moisture content of Daqu in g/100 g, m is
the weight of the bottle in g, m; and m, denote the current and dry
weights of the Daqu in g, respectively. After the above treatment, 160
moisture content values were obtained.

2.5 Data analysis

2.5.1 Hyperspectral calibration and average spectra: To eliminate the
impacts of variations on illumination intensity, the detector sensitivity
and the transmission properties of the optics were corrected by
radiometric calibration utilizing dark and white reference images [26],
all the raw images were calibrated using the following equation:
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_ (I[A]-D[A)

RO = wir-oa

@
where R is the corrected image, I is the raw hyperspectral image, D is
the dark reference image acquired by covering the camera completely
(about 0% reflectance), and W is the white reference (teflon white
cuboid panel with 99% reflectance, 200 x 25 x 10 mm).

When the average spectrum of each Daqu was extracted, the
hyperspectral image data was opened and then selecting the region of
interest (ROI) (80 x 80 pixels) manually to extract the relevant spectra,
and the average reflectance spectrum of Daqu was obtained through
calibration [27]. The first 10 and the last 10 bands were removed due to
the high noise, and a total of 204 bands were taken into account in
subsequent studies.

2.5.2 Spectral pretreatment: The CR algorithm is a common spectral
analysis method, which is used to normalize reflectance spectra [28]. It
can effectively highlight the absorption and reflection characteristics
of spectral curves and compare individual absorption features from a
common baseline. It is advantageous to compare the eigenvalues with
other spectral curves so as to extract the key wavelengths for classi-
fication and recognition [29, 30]. The CR algorithm effect of the Daqu
average spectral reflectance curve is shown in Figure 2, where the blue
curve represents the original Daqu spectral reflectance curve, the
black dotted line indicates the envelope of the Daqu spectral reflec-
tance curve and the pink curve indicates the spectral reflectance curve
after the envelope is removed. Compared with the original Daqu
spectral reflectance curve, the spectral characteristic absorption peak
of the curve after correction by CR is well-defined.

First order derivative spectroscopy uses first derivatives of the
absorbance or reflectance with respect to wavelength for qualitative
and quantitative analysis. Spectral derivation can eliminate spectral
overlapping translation, enhance spectral characteristics, improve
spectral resolution and highlight the changes of the spectra based on
slope waveform[31]. The effects of spectral derivation are shown in
Figure 3, where Figure 3(a) is the average spectral reflectance curve of
Daqu, and Figure 3(b) is the first derivative average spectral reflec-
tance curve of Daqu.
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Figure 2: The average spectral reflectance curve of Daqu after CR
treatment.
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2.5.3 Sample division method: Generally, all the samples were
divided into a calibration set and a prediction set [7], Kennard—Stone
(KS) algorithm and sample set partitioning based on joint x-y distance
(SPXY) algorithm were adopted to select a calibration set with 120
samples and a prediction set with 40 samples for analysis in this work
[32].

2.6 Model establishment and evaluation

Support vector regression is a classical modeling method with excel-
lent generalization capability and high prediction accuracy, it uses
mapping relationships to transform the data with non-linear rela-
tionship in low-dimensional space into high-dimensional space, so
that a linear function can be constructed to describe the relationship
between these data. In general, it can transform non-linear data into
linear, data with regression [33].

After the regression models were established, the evaluation
indices primarily included the determination coefficient and cross-
validation RMSE, which were used to evaluate and compare the per-
formances of the models.

The equation for the determination coefficients of the set (RY) is:
R = i i - yiactual)2 ®)

Z?:l (yi - yme‘an)2
The equation for the RMSE of the setis:
n 2
RMSE = Zi:l (yn _y; ac[ual) (4)

In the above equation, n is the number of the set. For RMSE, the
closer the value is to 0, the better it is. For R, the closer the valueis to1,
the better it is [34].

3 Results and discussion

3.1 Experiments to determine the
characteristic water spectrum

The acquisition spectrum range of FX17 series hyper-
spectral cameras used in this paper is 940-1730 nm, which
is in the range of near infrared spectroscopy. This camera
was chosen as it collects spectral reflectance information of

1200
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Figure 3: The spectral curve of Daqu (a) and
after FORDS treatment (b).

(b)
the sample. Water has strong light transmission and ab-
sorption characteristics, and quartz sand, a carrier mate-
rial, was used to determine the characteristic water
spectrum for its stability. When water is added to quartz
sands, the changes in spectral characteristics of water can
be clearly observed. The spectral enhancement algorithm
is used to determine the characteristic water bands [35].
The dough shaping method is similar to the Daqu shaping
method. By analyzing the spectral reflectance curves of
dough with different moisture content, the relationship
between the spectral reflectance of the characteristic
bands, which were found in the quartz sand/water exper-
iments, and the moisture content gradient of dough was
studied. Thus, the reliability of the water spectral charac-
teristics was verified.

3.2 Hyperspectral experiments of the quartz
sand/water mixture

To explore the spectral differences of substances with and
without water, quartz sand was used as the control medium.
The spectral reflectance curves of pure quartz sand powder
and quartz sand with water were compared, and the effects
of water on the spectral information were studied.

After the hyperspectral data acquisition was acquired,
the ROI were divided (Figure 4). Figure 4(a) shows the
spectral image of quartz sand powder and ROI, whileFig-
ure 4(b) shows the spectral image and ROI of quartz sand
with added water.

After the division of ROI was completed, the average
spectral reflectance data were extracted, and the ROI
average spectral reflectance curves of quartz sand powder
with and without water are shown in Figure 5. It was found
that the spectral reflectance curves of quartz sand powder
with and without water are quite different. Owing to the
strong absorption of water, the overall spectral reflectance
of water-added quartz sand is lower than that of quartz
sand powder. In addition, there are reflection troughs at
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Figure 4: Hyperspectralimage of quartz sand (a), quartz sand/water
mixture (b), and after the ROI division (c) and (d), respectively.

980, 1200 and 1440 nm bands, and reflection peaks at 1090
and 1270 nm bands. To highlight the spectral characteris-
tics, the spectral enhancement is carried out by using the
CR algorithm and first order spectral derivative algorithm.
The effects after spectral enhancement are shown in
Figure 6. Figure 6(a) is the spectral reflectance after treat-
ment by the CR algorithm, and Figure 6(b) is the spectral
reflectance after first order spectral derivation treatment.
From Figure 6(a), it can be seen that there are obvious
characteristic absorption peaks at 980, 1200, and 1440 nm.
An obvious characteristic reflection peak is found at
1270 nm, but there was not a characteristic water band near
1090 nm due to spectral crossover. As shown in Figure 6(b),
the spectral derivative represents the slope of the reflec-
tance, which can eliminate the influence of the overall
absorbance of water and explains the change of the spec-
tral waveform. Compared with quartz sand powder, the
abrupt change of the characteristic waveform of quartz
sand mixed with water primarily occurs in the bands near
950, 1140, and 1330 nm.

3.3 Hyperspectral experiments of moisture
content in dough

Since only adhered to the surface of quartz sand and did
not absorb into the bulk of the quartz sand, hyperspectral
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Figure 5: The spectral reflectance curve of quartz sand powder ROI
and quartz sand/water ROI.

experiments of moisture in dough were carried out to study
the hyperspectral curves of water with varying moisture
contents. When preparing the experimental samples, a
certain amount of flour and water were evenly mixed and
kneaded into dough. Continuous kneading was performed
to reduce moisture in dough, and the data were collected
every 15 min. The changes of spectral curve were studied
when the water content changed, and the water dispersion
gradient was used to carry out comparative experiments.

The hyperspectral data of the collected dough were
divided into ROI, and the ROI was shown in Figure 7. After
ROI was partitioned, the average spectral reflectance of
dough ROI was extracted, and the reflectance curves of
dough at different time points were obtained as shown in
Figure 8. To highlight the spectral characteristics, the
spectral curves after pretreatments by the CR algorithm and
spectral derivative algorithm are shown in Figure 9(a, b),
respectively.

As shown in Figures 8 and 9, there is no characteristic
reflectance change in water at the 1090 nm. At 980, 1200,
1270, and 1440 nm bands, the spectral reflectance increases
with a decrease of water content, which satisfies the general
understanding of water because of its strong absorption
characteristics. According to the principles of spectral mo-
lecular oscillation, near infrared spectroscopy is caused by
the combination frequency or double frequency vibration of
molecules after absorbing electromagnetic waves. The O-H
bond of water absorbs light energy to form a reflection
spectrum, so the absorption peaks at 980, 1200, and
1440 nm are the spectral characteristics of water, while
1270 nm is not. From the local magnification in Figure 9(b), it
can be seen that the reflectivity of the derivative spectrum
increases with a decrease of water content at the bands of
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950, 1140, and 1330 nm, which also satisfies the variation
law of water characteristics.

3.4 Analysis of characteristic water
wavelength in Daqu

According to the water experiments of quartz sand and
dough, the water spectral characteristics exist in the 980,
1200, 1270, and 1440 nm bands. For these four bands, the
variation of spectral reflectance and corresponding water
content of Daqu were investigated. According to the data

1400
WaveLength(nm)

1000 1200 1600

Figure 8: The spectral reflectance curve of dough with varying
moisture content.

Figure 7: Hyperspectral image of dough after
ROI division with different knead time,

0 min (a), 15 min (b), 30 min (c) and 45 min
(d).

collected from Daqu in a distillery, the change of average
moisture content in Daqu during fermentation is shown in
Figure 10. Daqu fermentation consists of three stages, which
are the pre-turning stage in 0-5 days, post-turning stage at
6-10 days and another post-turning stage at 15-30 days. As
can be seen from Figure 10, during the fermentation process
of Daqu, the moisture content first decreased and then pla-
teaued. In the pre-and post-warping stages, the water con-
tent decreased rapidly, and the change of water content was
relatively smooth after the second warping. According to the
three fermentation stages of Daqu, the spectral reflectance
curves of the 2nd, 6th, 10th, 18th and 26th days at the 3rd
point of No. 1 Qufang were superimposed and analyzed. The
relationship between the moisture content and spectral
reflectance curve of Daqu was studied (Figure 11).

It can be found that the overall spectral reflectance
curve of Daqu increases with a decrease of water content.
Due to the interference of the overall absorption charac-
teristics of water, the CR algorithm is used to enhance the
spectrum and highlight the characteristic water bands. The
spectral derivative algorithm is used to eliminate the
interference caused by the overall absorbance of water and
highlight the changes of the characteristic waveform. The
spectral curves after correction by the CR and spectral
derivation algorithm are shown in Figure 12(a, b), respec-
tively. As shown in Figure 12(a), there is no variation of
water characteristics in the 1270 nm band, so there may be
no water characteristics in the vicinity of the 1270 nm band.
The spectral reflectance values of the bands around 980,
1200 and 1440 nm change regularly according to the water
content, so it can be inferred that the spectral characteristic
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wavelength of Daqu water is primarily around 980, 1200,
and 1440 nm. Figure 12(b) shows that the spectral reflec-
tance near the 950, 1140, and 1330 nm bands increases with
a decrease in water content after eliminating the influence
of the overall absorbance of water. Therefore, it can be
speculated that the characteristic waveforms of water can
be reflected at the 950, 1140, and 1330 nm bands.

1600 1700

Figure 11: The spectral reflection curves of
Daqu with different fermentation days.

3.5 Establishment of the moisture contentin
Daqu prediction model

Through designed experiments, it was found that the water
characteristic bands were primarily distributed at the 980,
1200, and 1440 nm, and the characteristic bands which
affected the characteristic water waveform were primarily
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Table 3: Performance of the models based on full spectrum bands.

Models Bands Pretreatment Classification of sample datasets Calibration set Prediction set
R RMSE R RMSE

SVR Full spectrum band None KS 0.9945 0.0064 0.9830 0.0094
SPXY 0.9908 0.0083 0.9968 0.0041

Derivation KS 0.9922 0.0076 0.9972 0.0042

SPXY 0.9914 0.0079 0.9979 0.0033

distributed at the 950, 1140, and 1330 nm. The spectral
characteristic band is inputted as the independent vari-
able, and the moisture index is outputted as the dependent
variable. The KS and SPXY were used to divide the sample
set, and the optimal prediction model was found by
comparing the unprocessed and spectral derivative data.
The determinant coefficient (R?) and RMSE are used to
evaluate the fitting effect of the model. The whole spectrum
and characteristic spectrum were compared to verify the
reliability of the characteristic spectrum band.

3.6 Analysis of the full spectrum model

The 224 bands in the 940-1730 nm spectral range were
used as independent variables to establish the prediction

model. The 120 Daqu samples were selected as calibra-
tion set by the sample set partition method, and the
remaining 40 samples were used as the prediction set.
The statistical results of full spectral modeling are shown
in Table 3.

As can be seen from Table 3, the prediction effect of the
spectral derivation model is generally better than that of
the unprocessed model. The model based on spectral de-
rivative pretreatment and KS algorithm for dividing the
sample set performed best where R? values of 0.9922 and
0.9972 as well as RMSEs of 0.76 and 0.33% were attained
for calibration and prediction, respectively. The fitting ef-
fects of calibration set and prediction set is shown in
Figure 13(a, b), respectively.

Although the prediction effect of the full spectrum
modeling is very ideal, the input feature dimension is large,
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the training efficiency of the model calculation is low, and
there are bands unrelated to water characteristics. There-
fore, the model of based on the characteristic spectral
bands of water were established and compared with the
full-band model.

3.7 Analysis of the characteristic spectrum
model

The spectral characteristic bands obtained from the design
experiments are used as independent variables for pre-
dictive modeling. The 120 samples also were selected as the
calibration set and 40 samples were used as the prediction
set. The performance of the model based on the charac-
teristic spectrum is shown in Table 4.

As can be seen from Table 4, the model based on
spectral derivative pretreatment and KS algorithm for
dividing the sample set performed best where R? values of
0.9844 and 0.9870 as well as RMSE of 1.07 and 0.91% were
attained for calibration and prediction, respectively. The
fitting effects of the training set and test set are shown in
Figure 14(a, b), respectively.

Table 4: Performance of the models based on feature bands.
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Compared with the full spectrum modeling, three
feature bands can greatly reduce the data dimension and
increase the algorithm speed, while the modeling and
prediction effects are also very good. The spectral deri-
vation pretreatment method is generally better than the
untreated method in modeling. Spectral derivation can
eliminate the overall absorption characteristics of liquid,
highlight the waveform change of the reflectance curve,
and reduce some interference. One of the advantage of
HSI is that it can visualize the distribution of predicted
values (spatial domain) in the food matrix in a pixel-wise
manner [9]. The characteristic spectrum model was used
for producing visualization maps where the moisture
content of Daqu were presented, As shown in Figure 15,
the pixels color of the image with higher moisture con-
tents was displayed in dark red, while the image with
lower contents was shown in dark blue. With the decrease
of moisture content of Daqu, the color of the image will
change to blue. There is a stripping effect on images, it is
mainly caused by the small number of training data
samples. Visualizing distribution map of Daqu offered a
more intuitive and comprehensive assessment of mois-
ture contents at each pixel, and the HSI spectroscopy

Models Bands Pretreatment Classification of sample datasets Calibration set Prediction set
R RMSE R RMSE
SVR 980.58 nm None KS 0.9884 0.0092 0.9849 0.0103
1199.87 nm SPXY 0.9843 0.0108 0.9883 0.0079

1439.07 nm
952.89 nm Derivation KS 0.9844 0.0107 0.9870 0.0091
1140.47 nm SPXY 0.9826 0.0114 0.9925 0.0065

1326.18 nm
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Figure14: The performance of the best model
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Figure 15: Visualization of Daqu moisture content in different
periods.

provides a reliable tool compared with the visual in-
spection for in-line systems.

4 Conclusions

In this paper, the characteristic spectral bands of water
were found by the quartz sand and dough water gradient
contrast experiments. The CR algorithm was used to
enhance the spectrum. In the near infrared band of 940-
1730 nm, the characteristic water spectrum was found near
980, 1200, and 1440 nm. To eliminate the overall absorp-
tion characteristics of liquids, the spectral derivative al-
gorithm was used to find the characteristic distributions
near 950, 1140, and 1330 nm, which affect the spectral
waveforms. The full spectral band and characteristic
spectral band reflectance values were used as feature in-
puts, and the moisture index was used as spectral feature
outputs. The prediction model was established by the SVR
algorithm to realize fast detection. Through the compari-
son of full spectrum and characteristic spectrum modeling,
it was found that although the modeling effect of charac-
teristic spectrum is slightly lower than that of full
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spectrum, the input characteristic dimension is reduced
from 224 to three bands, and the operation speed of the
optimization modeling is high. Above all, this study pro-
vides a novel and fast moisture content detection method
based on HSI.
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