Abstract
The influence of drying on the color, porosity, shrinkage and moisture of persimmon fruit during convective drying was determined by computer vision. The experiments were performed with persimmon fruit that were cut into slab 20 × 20 mm, which were arranged into a bigger slab, 60 × 60 mm. Drying process was carried out at 60 °C. Noticeable changes in quality parameters (color, porosity and shrinkage) could be observed during the drying process, where the central region of the sample evidenced less changes. Persimmon’s physical properties were experimentally obtained as the temperature function and heat and mass convective coefficients were adjusted as a time function. A numerical simulation using the Finite Volume Method allowed to describe the evolution of temperature and moisture content distributions during drying. The numerical and experimental results of temperature and moisture during persimmon drying were found to be in a good agreement.
Acknowledgments
The authors wish to acknowledge the financial support of this research partly funded by Fondecyt Regular 1140074.
References
1. Bibi N, Khattak AB, Mehmood Z. Quality improvement and shelf life extension of persimmon fruit (Diospyros kaki). J Food Eng. 2007;79:1359–1363. DOI:10.1016/j.jfoodeng.2006.04.016.Search in Google Scholar
2. Plaza L, Colina C, De Ancos B, Sánchez-Moreno C. Pilar Cano M. Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem. 2012;130:591–597. DOI:10.1016/j.foodchem.2011.07.080.Search in Google Scholar
3. Dembitsky VM, Poovarodom S, Leontowicz H, Leontowicz M, Vearasilp S, Trakhtenberg S, et al. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res Int. 2011;44:1671–1701. DOI:10.1016/j.foodres.2011.03.003.Search in Google Scholar
4. Itoh T, Ohguchi K, Nakajima C, Oyama M, Iinuma M, Nozawa Y, et al. Inhibitory effects of flavonoid glycosides isolated from the peel of Japanese persimmon (Diospyros kaki Fuyu) on antigen-stimulated degranulation in rat basophilic leukaemia RBL-2H3 cells. Food Chem. 2011;126:289–294. DOI:10.1016/j.foodchem.2010.10.058.Search in Google Scholar
5. Igual M, Castelló ML, Ortolá MD, Andrés A. Influence of vacuum impregnation on respiration rate, mechanical and optical properties of cut persimmon. J Food Eng. 2008;86:315–323. DOI:10.1016/j.jfoodeng.2007.06.002.Search in Google Scholar
6. Vásquez-Parra JE, Ochoa-Martínez CI, Bustos-Parra M. Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). J Food Eng. 2013;119:648–654. DOI:10.1016/j.jfoodeng.2013.06.037.Search in Google Scholar
7. Di Scala K, Crapiste G. Drying kinetics and quality changes during drying of red pepper. LWT Food Sci Technol. 2008;41:789–795. DOI:10.1016/j.lwt.2007.06.007.Search in Google Scholar
8. Mujumdar AS. Research and development in drying: Recent trends and future prospects. Dry Technol. 2004;22:1–26. DOI:10.1002/apj.5500100402.Search in Google Scholar
9. Farias VSO, Silva WP, E Silva CMDPS, Rocha VPT, Lima AGB. Drying of solids with irregular geometry: Numerical study and application using a three-dimensional model. Heat Mass Transf. 2013;49:695–709. DOI:10.1007/s00231-013-1112-4.Search in Google Scholar
10. Doymaz I. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Convers Manag. 2012;56:199–205. DOI:10.1016/j.enconman.2011.11.027.Search in Google Scholar
11. Kaya A, Aydin O, Dincer I. Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch). J Food Eng. 2008;88:323–330. DOI:10.1016/j.jfoodeng.2008.02.017.Search in Google Scholar
12. Vega A, Fito P, Andrés A, Lemus R. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng. 2007;79:1460–1466. DOI:10.1016/j.jfoodeng.2006.04.028.Search in Google Scholar
13. Lemus-Mondaca RA, Zambra CE, Vega-Gálvez A, Moraga NO. Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices. J Food Eng. 2013;116:109–117. DOI:10.1016/j.jfoodeng.2012.10.050.Search in Google Scholar
14. Kaya A, Aydin O, Demirtaş C. Experimental and theoretical analysis of drying carrots. Desalination. 2009;237:285–295. DOI:10.1016/j.desal.2008.01.022.Search in Google Scholar
15. Akpinar EK. Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J Food Eng. 2006;77:864–870. DOI:10.1016/j.jfoodeng.2005.08.014.Search in Google Scholar
16. Kaya A, Aydin O, Kolayli S. Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod Process. 2010;88:165–173. DOI:10.1016/j.fbp.2008.12.001.Search in Google Scholar
17. Ben Mabrouk S, Benali E, Oueslati H. Experimental study and numerical modelling of drying characteristics of apple slices. Food Bioprod Process. 2012;90:719–728. DOI:10.1016/j.fbp.2012.02.001.Search in Google Scholar
18. Chong CH, Law CL, Cloke M, Hii CL, Abdullah LC, Daud WRW. Drying kinetics and product quality of dried Chempedak. J Food Eng. 2008;88:522–527. DOI:10.1016/j.jfoodeng.2008.03.013.Search in Google Scholar
19. Hosseinpour S, Rafiee S, Mohtasebi SS, Aghbashlo M. Application of computer vision technique for on-line monitoring of shrimp color changes during drying. J Food Eng. 2013;115:99–114. DOI:10.1016/j.jfoodeng.2012.10.003.Search in Google Scholar
20. Acevedo NC, Briones V, Buera P, Aguilera JM. Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs. J Food Eng. 2008;85:222–231. DOI:10.1016/j.jfoodeng.2007.06.037.Search in Google Scholar
21. Yadollahinia A, Latifi A, Mahdavi R. New method for determination of potato slice shrinkage during drying. Comput Electron Agric. 2009;65:268–274. DOI:10.1016/j.compag.2008.11.003.Search in Google Scholar
22. Vega-Gálvez A, Lemus-Mondaca R, Bilbao-Sáinz C, Yagnam F, Rojas A. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annum L.): Mathematical modeling and evaluation of kinetic parameters. J Food Process Eng. 2008;31:120–137. DOI:10.1111/j.1745-4530.2007.00145.x.Search in Google Scholar
23. Choi Y, Okos M. Effects of temperature and compositions on the thermal properties of foods. New York: Elsevier, 1986.Search in Google Scholar
24. Kaya A, Aydin O, Demirtas C, Akgün M. An experimental study on the drying kinetics of quince. Desalination. 2007;212:328–343. DOI:10.1016/j.desal.2006.10.017.Search in Google Scholar
25. Bialobrzewski I. Determination of the mass transfer coefficient during hot-air-drying of celery root. J Food Eng. 2007;78:1388–1396. DOI:10.1016/j.jfoodeng.2006.01.011.Search in Google Scholar
26. Youcef-Ali S, Moummi N, Desmons JY, Abene A, Messaoudi H, Le Ray M. Numerical and experimental study of dryer in forced convection. Int J Energy Res. 2001;25:537–553. DOI:10.1002/er.707.Search in Google Scholar
27. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics – the finite volume method, Longman, England:Prentice Hall., 1995. DOI:10.2514/1.22547.Search in Google Scholar
28. Patankar S. Numerical heat transfer and fluid flow. New York: McGraw-Hill, 1980.Search in Google Scholar
29. Moraga NO, Barraza HG. Predicting heat conduction during solidification of a food inside a freezer due to natural convection. J Food Eng. 2003;56:17–26. DOI:10.1016/S0260-8774(02)00135-8.Search in Google Scholar
30. AOAC. Official methods of analysis of the Association of the Official Analytical Chemists, 15th ed. Arlington: AOAC, 1990.Search in Google Scholar
31. Briones V, Aguilera JM. Image analysis of changes in surface color of chocolate. Food Res Int. 2005;38:87–94. DOI:10.1016/j.foodres.2004.09.002.Search in Google Scholar
32. Papadakis SE, Abdul-Malek S, Kamdem RE, Yam KL. A versatile and inexpensive technique for measuring color of foods. Food Technol. 2000;54:48–51.Search in Google Scholar
33. Shi Q, Zheng Y, Zhao Y. Mathematical modeling on thin-layer heat pump drying of Yacon (Smallanthus sonchifolius) slices. Energy Convers Manag. 2013;71:208–216. DOI:10.1016/j.enconman.2013.03.032.Search in Google Scholar
34. Madiouli J, Sghaier J, Lecomte D, Sammouda H. Determination of porosity change from shrinkage curves during drying of food material. Food Bioprod Process. 2012;90:43–51. DOI:10.1016/j.fbp.2010.12.002.Search in Google Scholar
35. Altuntas E, Cangi R, Kaya C. Physical and chemical properties of persimmon fruit. Int Agrophys. 2011;25:89–92.Search in Google Scholar
36. Celik A, Ercisli S. Persimmon cv. Hachiya (Diospyros kaki Thunb.) fruit: Some physical, chemical and nutritional properties. Int J Food Sci Nutr. 2008;59:599–606. DOI:10.1080/09637480701538221.Search in Google Scholar
37. Hussain MM, Dincer I. Numerical simulation of two-dimensional heat and moisture transfer during drying of a rectangular object. Numer Heat Transf Part Appl. 2003;43:867–878. DOI:10.1080/713838150.Search in Google Scholar
38. Oztop HF, Akpinar EK. Numerical and experimental analysis of moisture transfer for convective drying of some products. Int Commun Heat Mass Transf. 2008;35:169–177. DOI:10.1016/j.icheatmasstransfer.2007.06.005.Search in Google Scholar
39. Cuesta FJ, Lamúa M, Alique R. A new exact numerical series for the determination of the Biot number: Application for the inverse estimation of the surface heat transfer coefficient in food processing. Int J Heat Mass Transf. 2012;55:4053–4062. DOI:10.1016/j.ijheatmasstransfer.2012.03.047.Search in Google Scholar
40. Verboven P, Nicolaï BM, Scheerlinck N, De Baerdemaeker J. The local surface heat transfer coefficient in thermal food process calculations: A CFD approach. J Food Eng. 1997;33:15–35. DOI:10.1016/S0260-8774(97)00041-1.Search in Google Scholar
41. Kaymak-Ertekin F, Gedik A. Kinetic modelling of quality deterioration in onions during drying and storage. J Food Eng. 2005;68:443–453. DOI:10.1016/j.jfoodeng.2004.06.022.Search in Google Scholar
42. Peng J, Tang J, Barrett DM, Sablani SS, Anderson N, Powers JR. Thermal pasteurization of vegetables: Critical factors for process design and effects on quality. Crit Rev Food Sci Nutr 2015. DOI:10.1080/10408398.2015.1082126.Search in Google Scholar PubMed
43. Fernández-López JA, Angosto JM, Giménez PJ, León G. Thermal stability of selected natural red extracts used as food colorants. Plant Foods Hum Nutr. 2013;68:11–17. DOI:10.1007/s11130-013-0337-1.Search in Google Scholar PubMed
44. Di Scala K, Vega-Gálvez A, Uribe E, Oyanadel R, Miranda M, Vergara J, et al. Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int J Food Sci Technol. 2011;46:746–753. DOI:10.1111/j.1365-2621.2011.02555.x.Search in Google Scholar
45. Prathapan A, Lukhman M, Arumughan C, Sundaresan A, Raghu KG. Effect of heat treatment on curcuminoid, colour value and total polyphenols of fresh turmeric rhizome. Int J Food Sci Technol. 2009;44:1438–1444. DOI:10.1111/j.1365-2621.2009.01976.x.Search in Google Scholar
46. López-Nicolás JM, García-Carmona F. Enzymatic and nonenzymatic degradation of polyphenols. Fruit Veg Phytochem; Oxford, UK: Wiley-Blackwell. 2009;101–129. DOI:10.1002/9780813809397.ch4.Search in Google Scholar
47. Damasceno LF, Fernandes FAN, Magalhães MMA, Brito ES. Evaluation and optimization of non enzymatic browning of “cajuina” during thermal treatment. Brazilian J Chem Eng. 2008;25:313–320. DOI:10.1590/S0104-66322008000200010.Search in Google Scholar
48. Ibarz A, Pagán J, Garza S. Kinetic models of non-enzymatic browning in apple puree. J Sci Food Agric. 2000;80:1162–1168. DOI:10.1002/1097-0010(200006)80:8<1162::AID-JSFA613>3.0.CO;2-Z.Search in Google Scholar
49. Ahmed J, Shivhare US, Ramaswamy HS. A fraction conversion kinetic model for thermal degradation of color in red chilli puree and paste. LWT Food Sci Technol. 2002;35:497–503. DOI:10.1006/fstl.2002.0897.Search in Google Scholar
50. Levi G, Karel M. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res Int. 1995;28:145–151. DOI:10.1016/0963-9969(95)90798-F.Search in Google Scholar
51. Aprajeeta J, Gopirajah R, Anandharamakrishnan C. Shrinkage and porosity effects on heat and mass transfer during potato drying. J Food Eng. 2015;144:119–128. DOI:10.1016/j.jfoodeng.2014.08.004.Search in Google Scholar
52. Fernández L, Castillero C, Aguilera JM. An application of image analysis to dehydration of apple discs. J Food Eng. 2005;67:185–193. DOI:10.1016/j.jfoodeng.2004.05.070.Search in Google Scholar
53. Ramos IN, Silva CLM, Sereno AM, Aguilera JM. Quantification of microstructural changes during first stage air drying of grape tissue. J Food Eng. 2004;62:159–164. DOI:10.1016/S0260-8774(03)00227-9.Search in Google Scholar
54. Mayor L, Moreira R, Sereno AM. Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. J Food Eng. 2011;103:29–37. DOI:10.1016/j.jfoodeng.2010.08.031.Search in Google Scholar
55. Ratti C. Shrinkage during drying of foodstuffs. J Food Eng. 1994;23:91–105. DOI:10.1016/0260-8774(94)90125-2.Search in Google Scholar
56. Parti M. Mass transfer Biot numbers. Period Polytech Ser Mech Eng. 1994;38:109–122.Search in Google Scholar
57. Darvishi H, Azadbakht M, Rezaeiasl A, Farhang A. Drying characteristics of sardine fish dried with microwave heating. J Saudi Soc Agric Sci. 2012;12:121–127. DOI:10.1016/j.jssas.2012.09.002.Search in Google Scholar
58. Kumar R, Jain S, Garg MK. Drying behaviour of rapeseed under thin layer conditions. J Food Sci Technol. 2010;47:335–338. DOI:10.1007/s13197-010-0054-9.Search in Google Scholar PubMed PubMed Central
59. Mundada M, Hathan BS, Maske S. Mass Transfer Kinetics during Osmotic Dehydration of Pomegranate Arils. J Food Sci. 2011;76:31–39. DOI:10.1111/j.1750-3841.2010.01921.x.Search in Google Scholar PubMed
60. Diamante LM, Ihns R, Savage GP, Vanhanen L. A new mathematical model for thin layer drying of fruits. Int J Food Sci Technol. 2010;45:1956–1962. DOI:10.1111/j.1365-2621.2010.02345.x.Search in Google Scholar
61. Hii CL, Law CL, Cloke M. Modeling using a new thin layer drying model and product quality of cocoa. J Food Eng. 2009;90:191–198. DOI:10.1016/j.jfoodeng.2008.06.022.Search in Google Scholar
62. Ganesapillai M, Regupathi I, Murugesan T. Characterization and process optimization of microwave drying of plaster of Paris. Dry Technol. 2008;26:1484–1496. DOI:10.1080/07373930802412199.Search in Google Scholar
63. Mercali GD, Tessaro IC, Noreña CPZ, Marczak LDF. Mass transfer kinetics during osmotic dehydration of bananas (Musa sapientum, shum). Int J Food Sci Technol. 2010;45:2281–2289. DOI:10.1111/j.1365-2621.2010.02418.x.Search in Google Scholar
64. Akpinar EK, Bicer Y. Modelling of the drying of eggplants in thin-layers. Int J Food Sci Technol. 2005;40:273–281. DOI:10.1111/j.1365-2621.2004.00886.x.Search in Google Scholar
65. Sadi T, Meziane S. Mathematical modelling, moisture diffusion and specific energy consumption of thin layer microwave drying of olive pomace. Int Food Res J. 2015;22:494–501.Search in Google Scholar
66. Da Silva WP, E Silva CMDPS, Gama FJA, Gomes JP. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric Sci. 2014;13:67–74. DOI:10.1016/j.jssas.2013.01.003.Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Articles
- Quality Assessment and Mathematical Modeling of Hot-Air Convective Drying of Persimmon (Diospyros kaki L.) Fruit
- Colour, Texture, Microstructure and Nutrient Retention of Kiwifruit Slices Subjected to Combined Air-Impingement Jet Drying and Freeze Drying
- Evaluation of Mass Transfer Properties in Convective Drying of Kiwi and Eggplant
- Water Dynamics in Turbot (Scophthalmus maximus) Flesh during Baking and Microwave Heating: Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies
- Microwave-Driven Sugar Beet Pulp Liquefaction in Polyhydric Alcohols
- Drying Kinetics and Quality Attributes of White Radish in Low Pressure Superheated Steam
- A Comparative Study of Combined Microwave Techniques for Longan (Dimocarpus longan Lour.) Drying with Hot Air or Vacuum
- Chemical Characterization and Anti-inflammatory Activity of Polysaccharides from Zizyphus jujube cv. Muzao
- Physicochemical Properties of A- and B-type Granules of Wheat Starch and Effects on the Quality of Wheat-Based Noodle
- Potential Use of Tuna (Thunnus albacares) by-product: Production of Antioxidant Peptides and Recovery of Unsaturated Fatty Acids from Tuna Head
Articles in the same Issue
- Articles
- Quality Assessment and Mathematical Modeling of Hot-Air Convective Drying of Persimmon (Diospyros kaki L.) Fruit
- Colour, Texture, Microstructure and Nutrient Retention of Kiwifruit Slices Subjected to Combined Air-Impingement Jet Drying and Freeze Drying
- Evaluation of Mass Transfer Properties in Convective Drying of Kiwi and Eggplant
- Water Dynamics in Turbot (Scophthalmus maximus) Flesh during Baking and Microwave Heating: Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies
- Microwave-Driven Sugar Beet Pulp Liquefaction in Polyhydric Alcohols
- Drying Kinetics and Quality Attributes of White Radish in Low Pressure Superheated Steam
- A Comparative Study of Combined Microwave Techniques for Longan (Dimocarpus longan Lour.) Drying with Hot Air or Vacuum
- Chemical Characterization and Anti-inflammatory Activity of Polysaccharides from Zizyphus jujube cv. Muzao
- Physicochemical Properties of A- and B-type Granules of Wheat Starch and Effects on the Quality of Wheat-Based Noodle
- Potential Use of Tuna (Thunnus albacares) by-product: Production of Antioxidant Peptides and Recovery of Unsaturated Fatty Acids from Tuna Head