Startseite Bonobo optimizer: dynamically adaptive heuristic for enhanced MPPT in photovoltaic systems under partial shading – experimental validation with buck converter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bonobo optimizer: dynamically adaptive heuristic for enhanced MPPT in photovoltaic systems under partial shading – experimental validation with buck converter

  • Soufyane Ait El Ouahab ORCID logo EMAIL logo , Firdaous Bakkali , Abdellah Amghar , Hassan Sahsah , Lahcen El Mentaly ORCID logo und Meriem Boudouane ORCID logo
Veröffentlicht/Copyright: 30. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The integration of shunt bypass diodes in photovoltaic (P-V) module to mitigate hot spots frequently leads to the emergence of multiple in the PV array characteristics. Researchers consistently strive to develop, integrate, and refine innovative techniques inspired by various natural processes to achieve a global optimum that enhances the overall efficiency of PV systems. However, these techniques face challenges in adapting parameters to strike a delicate balance between exploration and exploitation, which is essential for circumventing local optima, reducing computation times, and refining precision to optimize energy capture. In this context, this paper introduces a groundbreaking new adaptive Maximum Power Point Tracking (MPPT) controller inspired by the social behavior and reproductive tactics observed in bonobos (BO). This innovative approach is underpinned by two key strategies: fission and fusion, with dynamic parameter adjustment in real-time. this enables for efficient exploration and exploitation of the search space, following the positive and negative phases of the BO. This method was compared with three methods: PSO, DE, and ICS, and evaluated through six simulation scenarios, ranging from 1 to 6 peaks, as well as three experimental scenarios: one uniform and the other two involving partial shading, using an Arduino board and a buck converter. According to the comparative analysis, the new BO algorithm outperforms the three other approaches in all performance evaluation parameters. It shows an average improvement in convergence time of more than 39.18 % and an average precision exceeding 99 %, with minimal oscillation in steady-state operation. This translates into an average MPE efficiency of over 96.66 %. Additionally, the experimental results confirm the findings from the simulations.


Corresponding author: Soufyane Ait El Ouahab, Metrology and Information Processing Lab, Ibnou Zohr University, Agadir, Morocco, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: QuillBot: Improve language.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Delnava, H, Khosravi, A, El Haj Assad, M. Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data. Renew Energy 2023;213:195–204. https://doi.org/10.1016/j.renene.2023.06.007.Suche in Google Scholar

2. Zhu, Z, Nadimi, E, Asadollahzadeh, M, Bahari, M, Zare Malek Abad, M, Aliehyaei, M. Investigation into the effect of multiple line dipoles magnetic field through LS-3 parabolic trough solar system. Appl Therm Eng 2023;235:121332. https://doi.org/10.1016/j.applthermaleng.2023.121332.Suche in Google Scholar

3. Tahami, H, Akbari, E, Mohammed, AH, Faraji, R, Channumsin, S. A transformerless enhanced-boost Quasi-Z-Source inverter with low input current ripple for stand-alone RES-based systems. Energies 2023;16:2611. https://doi.org/10.3390/en16062611.Suche in Google Scholar

4. Regaya, C, Hichem, H, Fethi, F, Ghanmi, A, Zaafouri, A, Chaari, A. Real-Time implementation of a novel MPPT control based on the improved PSO algorithm using an adaptive factor selection strategy for photovoltaic systems. ISA Trans 2023;146:496–510. https://doi.org/10.1016/j.isatra.2023.12.024.Suche in Google Scholar PubMed

5. Parlak, KŞ. Obtaining electrical characteristics of a PV module by FPGA based experimental system. Int J Hydrogen Energy 2020;45:33128–35. https://doi.org/10.1016/j.ijhydene.2020.09.113.Suche in Google Scholar

6. Revati, D, Natarajan, E. I-V and P-V characteristics analysis of a photovoltaic module by different methods using Matlab software. Mater Today Proc 2020;33:261–9. https://doi.org/10.1016/j.matpr.2020.04.043.Suche in Google Scholar

7. Kumar Yadav, V, Yadav, R, Singh, R, Mishra, I, Ganvir, I, Manish. Reconfiguration of PV array through recursive addition approach for optimal power extraction under PSC. Energy Convers Manag 2023;292:117412. https://doi.org/10.1016/j.enconman.2023.117412.Suche in Google Scholar

8. Ayop, R, Zaki, MFI, Tan, CW, Md Ayob, S, Abdul Aziz, MJ. Optimum sizing of components for photovoltaic MPPT buck converter. Sol Energy 2022;243:236–46. https://doi.org/10.1016/j.solener.2022.07.032.Suche in Google Scholar

9. Mirbagheri, SZ, Mekhilef, S, Mirhassani, SM. MPPT with Inc.Cond method using conventional interleaved boost converter. Energy Proc 2013;42:24–32. https://doi.org/10.1016/j.egypro.2013.11.002.Suche in Google Scholar

10. Motahhir, S, El Ghzizal, A, Sebti, S, Derouich, A. Proposal and implementation of a novel perturb and observe algorithm using embedded software. In: 2015 3rd International renewable and sustainable energy conference (IRSEC). Marrakech: IEEE; 2015:1–5 pp.10.1109/IRSEC.2015.7455057Suche in Google Scholar

11. Sai, BSV, Khadtare, SA, Chatterjee, D. An improved weather adaptable P&O MPPT technique under varying irradiation condition. ISA Trans 2023;140:438–58. https://doi.org/10.1016/j.isatra.2023.05.025.Suche in Google Scholar PubMed

12. El Mentaly, L, Amghar, A, Sahsah, H. Comparison between HC, FOCV and TG MPPT algorithms for PV solar systems using buck converter. In: 2017 International conference on wireless technologies, embedded and intelligent systems (WITS). Fez, Morocco: IEEE; 2017:1–5 pp.10.1109/WITS.2017.7934609Suche in Google Scholar

13. Ait, S, Ouahab, E, Bakkali, F, Amghar, A, Sahsah, H, Mentaly, L, et al.. Design and implementation of temperature-parametric for MPPT of photovoltaic systems: experimental validation using PI controller. Comput Electr Eng 2024;120:109707. https://doi.org/10.1016/j.compeleceng.2024.109707.Suche in Google Scholar

14. Eltamaly, AM, Al-Saud, MS, Abokhalil, AG. A novel BA strategy for MPPT of photovoltaic energy systems under dynamic partial shading. IEEE Access 2020;8:10048–60. https://doi.org/10.1109/ACCESS.2020.2964759.Suche in Google Scholar

15. Khezzane, K, Khoucha, F. Application de la technique PSO pour la poursuite du PPM d’un système photovoltaïque. In: The 3rd international seminar on new and renewable energies. Ghardaia, Algeria; 2014.Suche in Google Scholar

16. Baatiah, AO, Eltamaly, AM, Alotaibi, MA. Improving photovoltaic MPPT performance through PSO dynamic swarm size reduction. Energies 2023;16:6433. https://doi.org/10.20944/preprints202308.0684.v1.Suche in Google Scholar

17. Javed, S, Ishaque, K. A comprehensive analyses with new findings of different PSO variants for MPPT problem under partial shading. Ain Shams Eng J 2022;13:101680. https://doi.org/10.1016/j.asej.2021.101680.Suche in Google Scholar

18. Mao, M, Duan, Q, Duan, P, Hu, B. Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV system under PSC. Trans Inst Meas Control 2018;40:2178–99. https://doi.org/10.1177/0142331217697374.Suche in Google Scholar

19. Gavhane, PS, Krishnamurthy, S, Dixit, R, Ram, JP, Rajasekar, N. EL-PSO based MPPT for solar PV under PSC. Energy Proc 2017;117:1047–53. https://doi.org/10.1016/j.egypro.2017.05.227.Suche in Google Scholar

20. Eltamaly, AM. An improved CS algorithm for MPPT of photovoltaic systems under PSC. Energies 2021;14:953. https://doi.org/10.3390/en14040953.Suche in Google Scholar

21. Tey, KS, Mekhilef, S, Yang, H-T, Chuang, M-K. A DE based MPPT method for photovoltaic modules under PSC. Int J Photoenergy 2014;2014:1–10. https://doi.org/10.1155/2014/945906.Suche in Google Scholar

22. Yousri, D, Babu, TS, Allam, D, Ramachandaramurthy, VK, Etiba, MB. A novel chaotic FPA for GMPPT for photovoltaic system under PSC. IEEE Access 2019;7:121432–45. https://doi.org/10.1109/ACCESS.2019.2937600.Suche in Google Scholar

23. Mohanty, S, Subudhi, B, Ray, PK. A new MPPT design using GWO technique for photovoltaic system under PSC. IEEE Trans Sustain Energy 2016;7:181–8. https://doi.org/10.1109/TSTE.2015.2482120.Suche in Google Scholar

24. Gong, L, Hou, G, Huang, C. A two-stage MPPT controller for PV system based on the improved ABC and simultaneous heat transfer search algorithm. ISA Trans 2023;132:428–43. https://doi.org/10.1016/j.isatra.2022.06.005.Suche in Google Scholar PubMed

25. Sajid, I, Sarwar, A, Tariq, M, Bakhsh, FI, Ahmad, S, Shah Noor Mohamed, A. Archimedes optimization algorithm (AOA)-Based GMPPT for a PVS under partial and complex shading conditions. Energy 2023;283:129169. https://doi.org/10.1016/j.energy.2023.129169.Suche in Google Scholar

26. Abdulhasan Salim, J, Albaker, BM, Shyaa Alwan, M, Hasanuzzaman, M. Hybrid MPPT approach using CS and GWO for PV systems under variant operating conditions. Global Energy Interconnect 2022;5:627–44. https://doi.org/10.1016/j.gloei.2022.12.005.Suche in Google Scholar

27. Celikel, R, Yilmaz, M, Gundogdu, A. A voltage scanning-based MPPT method for PV power systems under complex PSC. Renew Energy 2022;184:361–73. https://doi.org/10.1016/j.renene.2021.11.098.Suche in Google Scholar

28. Yılmaz, M, Kaleli, A, Çorapsız, MF. Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs. Renew Energy 2023;219:119470. https://doi.org/10.1016/j.renene.2023.119470.Suche in Google Scholar

29. Kishore, DJK, Mohamed, MR, Sudhakar, K, Peddakapu, K. Swarm intelligence-based MPPT design for PV systems under diverse PSC. Energy 2023;265:126366. https://doi.org/10.1016/j.energy.2022.126366.Suche in Google Scholar

30. Priyadarshi, N, Padmanaban, S, Kiran Maroti, P, Sharma, A. An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Syst J 2019;13:1861–71. https://doi.org/10.1109/JSYST.2018.2817584.Suche in Google Scholar

31. Das, AK, Pratihar, B, Pratihar, DK. Evolving fuzzy reasoning approach using a novel nature-inspired optimization tool. Expert Syst Appl 2021;170:114577. https://doi.org/10.1016/j.eswa.2021.114577.Suche in Google Scholar

32. Das, AK, Pratihar, DK. A new bonobo optimizer (BO) for real-parameter optimization. In: 2019 IEEE region 10 symposium (TENSYMP). Kolkata, India: IEEE; 2019:108–13 pp.10.1109/TENSYMP46218.2019.8971108Suche in Google Scholar

33. Abdelghany, RY, Kamel, S, Sultan, HM, Khorasy, A, Elsayed, SK, Ahmed, M. Development of an improved bonobo optimizer and its application for solar cell parameter estimation. Sustainability 2021;13:3863. https://doi.org/10.3390/su13073863.Suche in Google Scholar

34. Das, AK, Pratihar, DK. Optimal preventive maintenance interval for a Crankshaft balancing machine under reliability constraint using Bonobo Optimizer. In: Advances in mechanism and machine science, vol. 73, T. Uhl, Éd., in Mechanisms and machine science, vol. 73. Cham: Springer International Publishing; 2019:1659–68 pp.10.1007/978-3-030-20131-9_164Suche in Google Scholar

35. Eid, A, Kamel, S, Hassan, MH, Khan, B. A comparison study of multi-objective bonobo optimizers for optimal integration of distributed generation in distribution systems. Front Energy Res 2022;10:847495. https://doi.org/10.3389/fenrg.2022.847495.Suche in Google Scholar

36. Priyadarshi, N, Padmanaban, S, Holm-Nielsen, JB, Blaabjerg, F, Bhaskar, MS. An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst J 2020;14:1218–29. https://doi.org/10.1109/JSYST.2019.2949083.Suche in Google Scholar

37. Priyadarshi, N, Padmanaban, S, Bhaskar, MS, Azam, F, Khan, B, Hussien, MG. A novel hybrid grey wolf optimized fuzzy logic control based photovoltaic water pumping system. IET Renew Power Gener 2022:rpg2.12638. https://doi.org/10.1049/rpg2.12638.Suche in Google Scholar

38. Priyadarshi, N, Maroti, PK, Hussien, MG. Extensive performance investigation of Luo converter-based modified firefly maximum point tracking algorithm for permanent magnet synchronous motor-driven photovoltaic pumping system. IET Renew Power Gener 2022:rpg2.12520. https://doi.org/10.1049/rpg2.12520.Suche in Google Scholar

39. Motahhir, S, El Ghzizal, A, Sebti, S, Derouich, A. Modeling of photovoltaic system with modified incremental conductance algorithm for fast changes of irradiance. Int J Photoenergy 2018;2018:1–13. https://doi.org/10.1155/2018/3286479.Suche in Google Scholar

40. Gouabi, H, Hazzab, A, Habbab, M, Rezkallah, M, Chandra, A. Experimental implementation of a novel scheduling algorithm for adaptive and modified P&O MPPT controller using fuzzy logic for WECS. Adapt Control Signal 2021;35:1732–53. https://doi.org/10.1002/acs.3288.Suche in Google Scholar

41. Belmadani, H, Bradai, R, Kheldoun, A, Mohammed, KK, Mekhilef, S, Belkhier, Y, et al.. A new fast and efficient MPPT algorithm for partially shaded PV systems using a hyperbolic slime mould algorithm. Int J Energy Res 2024;2024:1–26. https://doi.org/10.1155/2024/5585826.Suche in Google Scholar

42. Kumar, V, Bindal, RK A comparative analysis of effective MPPT technology for photovoltaic system with boost converter. Mater Today Proc 2022;69:A1–5. https://doi.org/10.1016/j.matpr.2022.11.026.Suche in Google Scholar

43. Pervez, I, Shams, I, Mekhilef, S, Sarwar, A, Tariq, M, Alamri, B. Most valuable player algorithm based MPPT for a partially shaded PV generation system. IEEE Trans Sustain Energy 2021;12:1876–90. https://doi.org/10.1109/TSTE.2021.3069262.Suche in Google Scholar

44. Regaya, CB, Brahmi, M, Hamdi, H, Zaafouri, A, Hussein, T. MPPT based on a novel multi-swarm PSO with factor selection strategy for PV applications. Int J Circuit Electron 2022;7:41–6.Suche in Google Scholar

45. Ben hmamou, D, Elyaqouti, M, hanafi Arjdal, E, Saadaoui, D, Lidaighbi, S, Chaoufi, J, et al.. A novel hybrid numerical with analytical approach for parameter extraction of photovoltaic modules. Energy Convers Manag X 2022;14:100219. https://doi.org/10.1016/j.ecmx.2022.100219.Suche in Google Scholar

46. Bayrak, F, Oztop, HF. Effects of static and dynamic shading on thermodynamic and electrical performance for photovoltaic panels. Appl Therm Eng 2020;169:114900. https://doi.org/10.1016/j.applthermaleng.2020.114900.Suche in Google Scholar

47. Motahhir, S, El Ghzizal, A, Sebti, S, Derouich, A. Shading effect to energy withdrawn from the photovoltaic panel and implementation of DMPPT using C Language. IREACO 2016;9:88. https://doi.org/10.15866/ireaco.v9i2.8850.Suche in Google Scholar

48. El Mentaly, L, Amghar, A, Sahsah, H. Improvement of the temperature parametric (TP) method for fast tracking of MPP in photovoltaic modules. Int J Emerg Elec Power Syst 2019;20. https://doi.org/10.1515/ijeeps-2018-0311.Suche in Google Scholar

49. Ram, JP, Pillai, DS, Ghias, AMYM, Rajasekar, N. Performance enhancement of solar PV systems applying P&O assisted FPA. Sol Energy 2020;199:214–29. https://doi.org/10.1016/j.solener.2020.02.019.Suche in Google Scholar

50. Shan, X, Liu, K, Sun, P-L. Modified BA based on Lévy flight and opposition based learning. Sci Program 2016;2016:1–13. https://doi.org/10.1155/2016/8031560.Suche in Google Scholar

51. Mohamed, AW, Sabry, HZ, Khorshid, M. An alternative DE algorithm for global optimization. J Adv Res 2012;3:149–65. https://doi.org/10.1016/j.jare.2011.06.004.Suche in Google Scholar

52. Kebbab, FZ, Sabah, L, Nouri, H. A comparative analysis of MPPT techniques for grid connected PVs. Eng Technol Appl Sci Res 2022;12:8228–35. https://doi.org/10.48084/etasr.4704.Suche in Google Scholar

53. Sera, D, Kerekes, T, Teodorescu, R, Blaabjerg, F. Improved MPPT method for rapidly changing environmental conditions. In: 2006 IEEE international symposium on industrial electronics. Montreal, Que.: IEEE; 2006:1420–5 pp.10.1109/ISIE.2006.295680Suche in Google Scholar

54. Ben Hmamou, D, Elyaqouti, M, Achouch, S, Ydir, B, hanafi Arjdal, E, Saadaoui, D, et al.. Experimental characterization of photovoltaic systems using sensors based on MicroLab card: design, implementation, and modeling. Renew Energy 2024;223:120049. https://doi.org/10.1016/j.renene.2024.120049.Suche in Google Scholar

55. Das, AK, Pratihar, DK. Bonobo optimizer (BO): an intelligent heuristic with self-adjusting parameters over continuous spaces and its applications to engineering problems. Appl Intell 2022;52:2942–74. https://doi.org/10.1007/s10489-021-02444-w.Suche in Google Scholar

56. Ahmed, J, Salam, Z. A MPPT for PV system using CS with partial shading capability. Appl Energy 2014;119:118–30. https://doi.org/10.1016/j.apenergy.2013.12.062.Suche in Google Scholar

57. Mosaad, MI, abed el-Raouf, MO, Al-Ahmar, MA, Banakher, FA. MPPT of PV system Based CS Algorithm; review and comparison. Energy Proc 2019;162:117–26. https://doi.org/10.1016/j.egypro.2019.04.013.Suche in Google Scholar

58. Roy, S, Sinha Chaudhuri, S. CS algorithm using Lèvy flight: a review. IJMECS 2013;5:10–15. https://doi.org/10.5815/ijmecs.2013.12.02.Suche in Google Scholar

59. Koad, RBA, Zobaa, AF, El-Shahat, A. A novel MPPT algorithm based on PSO for photovoltaic systems. IEEE Trans Sustain Energy 2017;8:468–76. https://doi.org/10.1109/TSTE.2016.2606421.Suche in Google Scholar

60. Ishaque, K, Salam, Z, Amjad, M, Mekhilef, S. An improved PSO–based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 2012;27:3627–38. https://doi.org/10.1109/TPEL.2012.2185713.Suche in Google Scholar

61. Seyedmahmoudian, M, Mekhilef, S, Rahmani, R, Yusof, R, Asghar Shojaei, A. MPPT of partial shaded photovoltaic array using an ED algorithm: a PSO technique. J Renew Sustain Energy 2014;6:023102. https://doi.org/10.1063/1.4868025.Suche in Google Scholar

62. Wei, T, Liu, D, Zhang, C. An improved PSO-based MPPT strategy for PV system. MATEC Web Conf 2017;139:00052. https://doi.org/10.1051/matecconf/201713900052.Suche in Google Scholar

63. Zaki Diab, AA, Rezk, H. Global MPPT based on flower pollination and DE algorithms to mitigate partial shading in building integrated PV system. Sol Energy 2017;157:171–86. https://doi.org/10.1016/j.solener.2017.08.024.Suche in Google Scholar

64. Sridhar, R, Jeevananthan, S, Dash, SS, Selvan, NT. Unified MPPT controller for partially shaded panels in a photovoltaic array. Int J Autom Comput 2014;11:536–42. https://doi.org/10.1007/s11633-014-0828-z.Suche in Google Scholar

65. Mohanty, S, Subudhi, B, Ray, PK. A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy 2016;7:181–8. https://doi.org/10.1109/tste.2015.2482120. https://doi.10.1109/TSTE.2015.2482120.Suche in Google Scholar

66. Abouzeid, AF, Eleraky, H, Kalas, A, Rizk, R, Elsakka, MM, Refaat, A. Experimental validation of a low-cost maximum power point tracking technique based on artificial neural network for photovoltaic systems. Sci Rep 2024;14:18280. https://doi.10.1038/s41598-024-67306-0.10.1038/s41598-024-67306-0Suche in Google Scholar PubMed PubMed Central

Received: 2024-07-04
Accepted: 2024-12-06
Published Online: 2024-12-30

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2024-0193/html
Button zum nach oben scrollen