Home Performance, characterization, and application of synthesized pervaporation membranes for desalination using response surface methodology
Article
Licensed
Unlicensed Requires Authentication

Performance, characterization, and application of synthesized pervaporation membranes for desalination using response surface methodology

  • Pradeep Kumar Ramteke and Ajit P. Rathod EMAIL logo
Published/Copyright: February 13, 2025

Abstract

Desalination is a crucial process in addressing the global water scarcity crisis. Among the various techniques available, pervaporation has emerged as a promising method due to its energy efficiency and high separation performance. The purpose of this research was to create a polyethersulfone (PES) membranes with high permeability and enhanced hydrophilicity. The membranes for pervaporation (PV) desalination were prepared using the phase inversion technique. PES membranes were fabricated from different concentrations while maintaining constant preparation conditions. These membranes were characterized using Zeta potential analysis, Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction spectroscopy (X-ray), atomic force microscope (AFM) and thermogravimetric analysis (TGA). A permeate flux of 0.05 L/m2 h and rejection percentage of 91 % were observed using PES 8 membrane from feed concentration 7,090 ppm. Reusability of PES membranes were tested our three cycles for desalination. The model equation was derived for salt rejection using the Box-Behnken model of response surface methodology (RSM). However, the experimental study revealed that the model suited the data perfectly. This study highlights the excellent potential of these PES membranes for treating salt solutions.


Corresponding author: Ajit P. Rathod, Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India, E-mail:

List of abbreviations

J

The permeate flux (L)

ppm

Parts per million

M

Molecular weight (kg/kmol)

µm

Thickness (micron)

wt

Weight percentage

T

Temperature (k)

t

Time (s)

ɛ

The porosity

Wd

Dry weight

Ww

Wet membrane

ρ water

Density of water (kg/m³)

V memb

Volume of membranes (m³)

C f

Concentration of feed

C

Concentration of permeate

A

Surface area of membrane (m2)

R

Rejection of salt (%)

τ

Main size or grain size

Θ

Bragg angle

β

Radians

λ

X-ray wavelength

PES

Polyethersulfone

DMSO

Dimethyl sulfoxide

HMPA

Hexamethylphosphoramide

PP/PE

Polypropylene/polyethylene

PV

Pervaporation

FTIR

Fourier transform infrared spectroscopy

FESEM

Field-emission scanning electron microscopy

AFM

Atomic force microscope

TGA

Thermogravimetric analysis

RSM

Response surface methodology

Tg

Glass transition temperature

ATR

Attenuated-total-reflectance

Td

Decomposition temperature

ZnSe

Zinc selenium

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] V. G. Gude, “Desalination and water reuse to address global water scarcity,” Rev. Environ. Sci. Bio/Technol., vol. 16, no. 4, pp. 591–609, 2017, https://doi.org/10.1007/s11157-017-9449-7.Search in Google Scholar

[2] K. Bhardwaj, A. Kumar, and N. Boora, “Desalination and advanced water treatment,” in Futuristic Trends in Renewable & Sustainable Energy Volume 3 Book 5, Karnataka, India, Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024, pp. 19–36.10.58532/V3BARS5P1CH2Search in Google Scholar

[3] R. K. Mishra, “Fresh water availability and its global challenge,” Br. J. Multidiscip. Adv. Stud., vol. 4, no. 3, pp. 1–78, 2023, https://doi.org/10.37745/bjmas.2022.0208.Search in Google Scholar

[4] H. Shemer, S. Wald, and R. Semiat, “Challenges and solutions for global water scarcity,” Membranes (Basel), vol. 13, no. 6, p. 612, 2023, https://doi.org/10.3390/membranes13060612.Search in Google Scholar PubMed PubMed Central

[5] N. Prihasto, Q.-F. Liu, and S.-H. Kim, “Pre-treatment strategies for seawater desalination by reverse osmosis system,” Desalination, vol. 249, no. 1, pp. 308–316, 2009. https://doi.org/10.1016/j.desal.2008.09.010.Search in Google Scholar

[6] P. S. Goh, A. F. Ismail, and N. Hilal, “Desalination technology and advancement,” in Oxford Research Encyclopedia of Environmental Science, UK, Oxford University Press, 2019.10.1093/acrefore/9780199389414.013.599Search in Google Scholar

[7] D. Xevgenos, K. Moustakas, D. Malamis, and M. Loizidou, “An overview on desalination & sustainability: renewable energy-driven desalination and brine management,” Desalin. Water Treat., vol. 57, no. 5, pp. 2304–2314, 2016, https://doi.org/10.1080/19443994.2014.984927.Search in Google Scholar

[8] A. Shokri and M. Sanavi Fard, “A sustainable approach in water desalination with the integration of renewable energy sources: environmental engineering challenges and perspectives,” Environ. Adv., vol. 9, p. 100281, 2022, https://doi.org/10.1016/j.envadv.2022.100281.Search in Google Scholar

[9] A. M. Omer, “Energy, environment and sustainable development,” Renew. Sustain. Energy Rev., vol. 12, no. 9, pp. 2265–2300, 2008, https://doi.org/10.1016/j.rser.2007.05.001.Search in Google Scholar

[10] M. Schiffler, “Perspectives and challenges for desalination in the 21st century,” Desalination, vol. 165, pp. 1–9, 2004, https://doi.org/10.1016/j.desal.2004.06.001.Search in Google Scholar

[11] F. A. Padder and A. Bashir, “Scarcity of water in the twenty-first century: problems and potential remedies,” Medalion J. Med. Res., vol. 4, no. 1, pp. 1–5, 2023.10.59733/medalion.v4i1.66Search in Google Scholar

[12] M. El Haj Assad, M. Nooman AlMallahi, M. A. Abdelsalam, M. AlShabi, and W. N. AlMallahi, “Desalination technologies: overview,” in 2022 Advances in Science and Engineering Technology International Conferences (ASET), IEEE, 2022, pp. 1–4.10.1109/ASET53988.2022.9734991Search in Google Scholar

[13] S. M. J. Seyed Sabour and B. Ghorashi, “A comprehensive review of major water desalination techniques and mineral extraction from saline water,” Sep. Purif. Technol., vol. 349, p. 127913, 2024, https://doi.org/10.1016/j.seppur.2024.127913.Search in Google Scholar

[14] Y. Li, et al.., “Desalination by membrane pervaporation: a review,” Desalination, vol. 547, p. 116223, 2023, https://doi.org/10.1016/j.desal.2022.116223.Search in Google Scholar

[15] Y. Wang, et al., “Cyclodextrin-based pervaporation membranes for low-temperature seawater desalination,” J. Memb. Sci., vol. 675, p. 121527, 2023, https://doi.org/10.1016/j.memsci.2023.121527.Search in Google Scholar

[16] L. M. Vane, “Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation,” J. Chem. Technol. Biotechnol., vol. 94, no. 2, pp. 343–365, 2019, https://doi.org/10.1002/jctb.5839.Search in Google Scholar PubMed PubMed Central

[17] V. S. Chandane, A. P. Rathod, and K. L. Wasewar, “Pervaporation reactor for enhanced esterification of lactic acid and isobutyl alcohol,” Chem. Eng. Technol., vol. 43, no. 2, pp. 282–288, 2020, https://doi.org/10.1002/ceat.201900153.Search in Google Scholar

[18] G. Liu and W. Jin, “Pervaporation membrane materials: recent trends and perspectives,” J. Memb. Sci., vol. 636, p. 119557, 2021, https://doi.org/10.1016/j.memsci.2021.119557.Search in Google Scholar

[19] M. H. V. Mulder and C. A. Smolders, “Mass transport phenomena in pervaporation processes,” Sep. Sci. Technol., vol. 26, no. 1, pp. 85–95, 1991, https://doi.org/10.1080/01496399108050458.Search in Google Scholar

[20] J. Néel, P. Aptel, and R. Clément, “Basic aspects of pervaporation,” Desalination, vol. 53, nos. 1–3, pp. 297–326, 1985, https://doi.org/10.1016/0011-9164(85)85069-4.Search in Google Scholar

[21] L. M. Robeson, W. F. Burgoyne, M. Langsam, A. C. Savoca, and C. F. Tien, “High performance polymers for membrane separation,” Polymer (Guildf)., vol. 35, no. 23, pp. 4970–4978, 1994, https://doi.org/10.1016/0032-3861(94)90651-3.Search in Google Scholar

[22] M. E. Cates and E. Tjhung, “Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions,” J. Fluid Mech., vol. 836, p. P1, 2018, https://doi.org/10.1017/jfm.2017.832.Search in Google Scholar

[23] V. G. Gude, “Desalination and sustainability – an appraisal and current perspective,” Water Res., vol. 89, pp. 87–106, 2016, https://doi.org/10.1016/j.watres.2015.11.012.Search in Google Scholar PubMed

[24] Z. Xie, “Hybrid organic-inorganic pervaporation membranes for desalination,” Ph.D. thesis, Victoria University, Melbourne, 2012.Search in Google Scholar

[25] M. Mukherjee, et al.., “Development of high performance pervaporation desalination membranes: a brief review,” Process Saf. Environ. Prot., vol. 159, pp. 1092–1104, 2022, https://doi.org/10.1016/j.psep.2022.01.076.Search in Google Scholar

[26] A. A. Sapalidis, “Porous polyvinyl alcohol membranes: preparation methods and applications,” Symmetry (Basel)., vol. 12, no. 6, p. 960, 2020, https://doi.org/10.3390/sym12060960.Search in Google Scholar

[27] I. Prihatiningtyas and B. Van der Bruggen, “Nanocomposite pervaporation membrane for desalination,” Chem. Eng. Res. Des., vol. 164, pp. 147–161, 2020, https://doi.org/10.1016/j.cherd.2020.10.005.Search in Google Scholar

[28] V. S. Chandane, A. P. Rathod, and K. L. Wasewar, “Enhancement of esterification conversion using pervaporation membrane reactor,” Resour. Technol., vol. 2, pp. S47–S52, 2016, https://doi.org/10.1016/j.reffit.2016.10.008.Search in Google Scholar

[29] M. Bie, et al., “One-step fabrication of hetero-structured polyethersulfone hollow fiber membranes through surface segregation for pervaporation desalination,” J. Memb. Sci., vol. 713, p. 123326, 2025, https://doi.org/10.1016/j.memsci.2024.123326.Search in Google Scholar

[30] R. D. Haikal, et al.., “Morphology and characteristics of polyethersulfone membrane modified with polyethylene glycol hexadecyl ether and nanocarbon,” Appl. Chem. Eng., vol. 7, no. 1, 2023, https://doi.org/10.24294/ace.v7i1.2291.Search in Google Scholar

[31] M. Peyravi, A. Rahimpour, M. Jahanshahi, A. Javadi, and A. Shockravi, “Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer,” Microporous Mesoporous Mater., vol. 160, pp. 114–125, 2012, https://doi.org/10.1016/j.micromeso.2012.04.036.Search in Google Scholar

[32] M. Raouf, R. Abedini, M. Omidkhah, and E. Nezhadmoghadam, “A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles,” Process Saf. Environ. Prot., vol. 133, pp. 394–407, 2020, https://doi.org/10.1016/j.psep.2019.11.002.Search in Google Scholar

[33] T. A. Otitoju, A. L. Ahmad, and B. S. Ooi, “Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending,” RSC Adv., vol. 8, no. 40, pp. 22710–22728, 2018, https://doi.org/10.1039/C8RA03296C.Search in Google Scholar PubMed PubMed Central

[34] H. Adib and A. Raisi, “Surface modification of a PES membrane by corona air plasma-assisted grafting of HB-PEG for separation of oil-in-water emulsions,” RSC Adv., vol. 10, no. 29, pp. 17143–17153, 2020, https://doi.org/10.1039/D0RA02032J.Search in Google Scholar

[35] A. S. Butt, A. A. Qaiser, N. Abid, and U. Mahmood, “Novel polyaniline–polyethersulfone nanofiltration membranes: effect of in situ polymerization time on structure and desalination performance,” RSC Adv., vol. 12, no. 52, pp. 33889–33898, 2022, https://doi.org/10.1039/D2RA05735B.Search in Google Scholar

[36] M. Farnam, H. Mukhtar, and A. M. Shariff, “Investigation of optimum drying conditions for pure PES membranes for gas separation,” Adv. Environ. Biol., vol. 9, pp. 326–331, 2016.Search in Google Scholar

[37] P. K. Ramteke, A. P. Rathod, S. M. Kodape, and S. S. Sonawane, “Development and evaluation of environmentally sustainable cenosphere ceramic membrane for the efficient separation of methylene blue dye,” Chem. Pap., 2024. https://doi.org/10.1007/s11696-024-03782-y.Search in Google Scholar

[38] I. G. Sandoval-Olvera, L. Villafaña-López, J. A. Reyes-Aguilera, M. Ávila-Rodríguez, T. A. Razo-Lazcano, and M. P. González-Muñoz, “Surface modification of polyethersulfone membranes with goethite through self-assembly,” Desalin. WATER Treat., vol. 65, pp. 199–207, 2017, https://doi.org/10.5004/dwt.2017.20302.Search in Google Scholar

[39] N. Alenazi, M. Hussein, K. Alamry, and A. Asiri, “Nanocomposite-based aminated polyethersulfone and carboxylate activated carbon for environmental application. A real sample analysis,” C, vol. 4, no. 2, p. 30, 2018, https://doi.org/10.3390/c4020030.Search in Google Scholar

[40] J. A. Prince, S. Bhuvana, V. Anbharasi, N. Ayyanar, K. V. K. Boodhoo, and G. Singh, “Self-cleaning metal organic framework (MOF) based ultra filtration membranes – a solution to bio-fouling in membrane separation processes,” Sci. Rep., vol. 4, no. 1, p. 6555, 2014, https://doi.org/10.1038/srep06555.Search in Google Scholar PubMed PubMed Central

[41] S. Belfer, R. Fainchtain, Y. Purinson, and O. Kedem, “Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled,” J. Memb. Sci., vol. 172, nos. 1–2, pp. 113–124, 2000, https://doi.org/10.1016/S0376-7388(00)00316-1.Search in Google Scholar

[42] L. E. Koloti, N. P. Gule, O. A. Arotiba, and S. P. Malinga, “Recent applications of laccase modified membranes in the removal of bisphenol A and other organic pollutants,” in Emerging Trends in Chemical Sciences, Cham, Springer International Publishing, 2018, pp. 285–312.10.1007/978-3-319-60408-4_17Search in Google Scholar

[43] P. Qu, H. Tang, Y. Gao, L. Zhang, and S. Wang, “Polyethersulfone composite membrane blended with cellulose fibrils,” BioResources, vol. 5, no. 4, pp. 2323–2336, 2010, https://doi.org/10.15376/biores.5.4.2323-2336.Search in Google Scholar

[44] S. S. Nayab, et al.., “Anti-Foulant ultrafiltration polymer composite membranes incorporated with composite activated carbon/chitosan and activated carbon/thiolated chitosan with enhanced hydrophilicity,” Membranes (Basel), vol. 11, no. 11, p. 827, 2021, https://doi.org/10.3390/membranes11110827.Search in Google Scholar PubMed PubMed Central

[45] K. Singh, S. Devi, H. C. Bajaj, P. Ingole, J. Choudhari, and H. Bhrambhatt, “Optical resolution of racemic mixtures of amino acids through nanofiltration membrane process,” Sep. Sci. Technol., vol. 49, no. 17, pp. 2630–2641, 2014, https://doi.org/10.1080/01496395.2014.911023.Search in Google Scholar

[46] H. Basri, A. F. Ismail, and M. Aziz, “Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity,” Desalination, vol. 273, no. 1, pp. 72–80, 2011, https://doi.org/10.1016/j.desal.2010.11.010.Search in Google Scholar

[47] F. S. Shariatmadar and M. Mohsen‐Nia, “PES/SiO2 nanocomposite by in situ polymerization: synthesis, structure, properties, and new applications,” Polym. Compos., vol. 33, no. 7, pp. 1188–1196, 2012, https://doi.org/10.1002/pc.22248.Search in Google Scholar

[48] L. Shen, et al.., “Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes,” Desalination, vol. 293, pp. 21–29, 2012, https://doi.org/10.1016/j.desal.2012.02.019.Search in Google Scholar

[49] M. Khayet and M. C. García-Payo, “X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps,” Desalination, vol. 245, nos. 1–3, pp. 494–500, 2009, https://doi.org/10.1016/j.desal.2009.02.013.Search in Google Scholar

[50] G. Wu, S. Gan, L. Cui, and Y. Xu, “Preparation and characterization of PES/TiO2 composite membranes,” Appl. Surf. Sci., vol. 254, no. 21, pp. 7080–7086, 2008, https://doi.org/10.1016/j.apsusc.2008.05.221.Search in Google Scholar

[51] M. A. Junker, W. M. de Vos, J. de Grooth, and R. G. H. Lammertink, “Relating uncharged solute retention of polyelectrolyte multilayer nanofiltration membranes to effective structural properties,” J. Memb. Sci., vol. 668, p. 121164, 2023, https://doi.org/10.1016/j.memsci.2022.121164.Search in Google Scholar

[52] C. Causserand, G. Pierre, S. Rapenne, J.-C. Schrotter, P. Sauvade, and O. Lorain, “Characterization of ultrafiltration membranes by tracer’s retention: comparison of methods sensitivity and reproducibility,” Desalination, vol. 250, no. 2, pp. 767–772, 2010, https://doi.org/10.1016/j.desal.2008.11.038.Search in Google Scholar

[53] N. K. Khanzada, R. A. Al-Juboori, M. Khatri, F. E. Ahmed, Y. Ibrahim, and N. Hilal, “Sustainability in membrane technology: membrane recycling and fabrication using recycled waste,” Membranes (Basel), vol. 14, no. 2, p. 52, 2024, https://doi.org/10.3390/membranes14020052.Search in Google Scholar PubMed PubMed Central

Received: 2024-09-10
Accepted: 2025-01-24
Published Online: 2025-02-13

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2024-0186/html
Scroll to top button